A248216 a(n) = 6^n - 2^n.
0, 4, 32, 208, 1280, 7744, 46592, 279808, 1679360, 10077184, 60465152, 362795008, 2176778240, 13060685824, 78364147712, 470184951808, 2821109841920, 16926659313664, 101559956406272, 609359739486208, 3656158439014400, 21936950638280704
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (8,-12).
Crossrefs
Programs
-
Magma
[6^n-2^n: n in [0..25]];
-
Mathematica
Table[6^n - 2^n, {n, 0, 25}] (* or *) CoefficientList[Series[4x/((1-2x)(1-6x)), {x, 0, 30}], x] LinearRecurrence[{8,-12},{0,4},30] (* Harvey P. Dale, Dec 21 2019 *)
-
Sage
[2^n*(3^n -1) for n in (0..25)] # G. C. Greubel, Feb 09 2021
Formula
G.f.: 4*x/((1-2*x)*(1-6*x)).
a(n) = 8*a(n-1) - 12*a(n-2).
E.g.f.: exp(6*x) - exp(2*x) = 2*exp(4*x)*sinh(2*x). - G. C. Greubel, Feb 09 2021
a(n) = 4*A016129(n-1). - R. J. Mathar, Mar 10 2022