cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A016145 Expansion of g.f. 1/((1-3*x)*(1-10*x)).

Original entry on oeis.org

1, 13, 139, 1417, 14251, 142753, 1428259, 14284777, 142854331, 1428562993, 14285688979, 142857066937, 1428571200811, 14285713602433, 142857140807299, 1428571422421897, 14285714267265691, 142857142801797073, 1428571428405391219, 14285714285216173657, 142857142855648520971
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A248226.

Programs

  • Mathematica
    Join[{a=1,b=13},Table[c=13*b-30*a;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 01 2011 *)
    CoefficientList[Series[1/((1-3x)(1-10x)),{x,0,20}],x] (* or *) LinearRecurrence[{13,-30},{1,13},20] (* Harvey P. Dale, May 04 2018 *)

Formula

a(n) = (10^(n+1) - 3^(n+1))/7 = 10*a(n-1) + 3^n = 3*a(n-1) + 10^n. - Henry Bottomley, Jul 25 2001
a(n) = 13*a(n-1) - 30*a(n-2), n >= 2. - Vincenzo Librandi, Mar 14 2011
From Elmo R. Oliveira, Mar 08 2025: (Start)
E.g.f.: exp(3*x)*(10*exp(7*x) - 3)/7.
a(n) = A248226(n+1)/7. (End)

A248225 a(n) = 6^n - 3^n.

Original entry on oeis.org

0, 3, 27, 189, 1215, 7533, 45927, 277749, 1673055, 10058013, 60407127, 362619909, 2176250895, 13059099693, 78359381127, 470170635669, 2821066860735, 16926530304573, 101559569247927, 609358577749029, 3656154953278575, 21936940180024653
Offset: 0

Views

Author

Vincenzo Librandi, Oct 04 2014

Keywords

Crossrefs

Cf. sequences of the form k^n-3^n: A005061 (k=4), A005058 (k=5), this sequence (k=6), A190541 (k=7), A190543 (k=8), A059410 (k=9), A248226 (k=10), A139741 (k=11).

Programs

  • Magma
    [6^n-3^n: n in [0..30]];
  • Mathematica
    Table[6^n - 3^n, {n, 0, 25}] (* or *) CoefficientList[Series[3 x / ((1 - 3 x) (1 - 6 x)), {x, 0, 30}], x]
    LinearRecurrence[{9,-18},{0,3},30] (* Harvey P. Dale, Jul 12 2025 *)

Formula

G.f.: 3*x/((1-3*x)*(1-6*x)).
a(n) = 9*a(n-1) - 18*a(n-2).
a(n) = 3^n*(2^n - 1) = A000244(n)*A000225(n).
E.g.f.: 2*exp(9*x/2)*sinh(3*x/2). - Elmo R. Oliveira, Mar 31 2025
Showing 1-2 of 2 results.