A248483 Consider two consecutive primes {p,q} such that P=2p+q and Q=2q+p are both prime. The sequence gives primes Q.
13, 19, 47, 181, 317, 367, 677, 743, 811, 1031, 1489, 2347, 2381, 2477, 2749, 2777, 4729, 4951, 5189, 5657, 5851, 6287, 7297, 7583, 8287, 8867, 8969, 9001, 9049, 9463, 10103, 10733, 11261, 12713, 13109, 14009, 14747, 17393, 17749, 18679, 19081, 20399, 21157, 22541
Offset: 1
Keywords
Examples
a(1)=13 because p=3, q=5 and P=11 and Q=13 are both prime. a(3)=47 because p=13, q=17 and P=43 and Q=47 are both prime.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
R:= NULL: count:= 0: q:= 2: while count < 100 do p:= q; q:= nextprime(q); if isprime(2*p+q) and isprime(p+2*q) then count:= count+1; R:= R, p+2*q fi od: R; # Robert Israel, Jan 05 2021
-
Mathematica
Select[Table[If[PrimeQ[2*Prime[j-1] + Prime[j]] && PrimeQ[Prime[j-1] + 2*Prime[j]],Prime[j-1] + 2*Prime[j],0],{j,2,2000}],#!=0&] (* Vaclav Kotesovec, Oct 08 2014 *) 2#[[2]]+#[[1]]&/@Select[Partition[Prime[Range[1000]],2,1],AllTrue[{2#[[1]]+#[[2]],2#[[2]]+ #[[1]]},PrimeQ]&] (* Harvey P. Dale, Jan 10 2024 *)
-
PARI
listQ(nn) = {forprime(p=2, nn, q = nextprime(p+1); if (isprime(2*p+q) && isprime(Q=2*q+p), print1(Q, ", ")););} \\ Michel Marcus, Oct 07 2014