cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A248531 Numbers n such that the smallest prime divisor of n^2+1 is 41.

Original entry on oeis.org

50, 114, 196, 214, 296, 624, 706, 770, 870, 934, 1034, 1180, 1280, 1426, 1444, 1590, 1690, 1754, 1836, 1936, 2000, 2164, 2246, 2264, 2346, 2574, 2674, 2756, 2820, 2984, 3066, 3084, 3230, 3330, 3394, 3494, 3576, 3640, 3740, 3886, 3904, 4214, 4296, 4460, 4624
Offset: 1

Views

Author

Michel Lagneau, Oct 08 2014

Keywords

Comments

Or numbers n such that the smallest prime divisor of n^2+1 is A002313(7).
a(n)== 32 or 50 (mod 82).

Examples

			50 is in the sequence because 50^2+1= 41*61.
		

Crossrefs

Programs

  • Magma
    [n: n in [2..5000] | PrimeDivisors(n^2+1)[1] eq 41]; // Bruno Berselli, Oct 08 2014
  • Mathematica
    lst={};Do[If[FactorInteger[n^2+1][[1, 1]]==41, AppendTo[lst, n]], {n, 2, 2000}]; lst
    Select[Range[5000],FactorInteger[#^2+1][[1,1]]==41&] (* Harvey P. Dale, Aug 15 2017 *)
    p = 41; ps = Select[Range[p - 1], Mod[#, 4] != 3 && PrimeQ[#] &]; Select[Range[5000], Divisible[(nn = #^2 + 1), p] && ! Or @@ Divisible[nn, ps] &] (* Amiram Eldar, Aug 16 2019 *)

A248532 Numbers n such that the smallest prime divisor of n^2+1 is 53.

Original entry on oeis.org

76, 136, 454, 500, 560, 666, 924, 984, 1196, 1454, 1514, 1666, 1726, 2090, 2196, 2256, 2620, 2726, 2786, 3044, 3104, 3150, 3210, 3256, 3316, 3680, 3786, 4104, 4210, 4270, 4316, 4634, 4694, 4800, 4846, 5224, 5330, 5694, 5800, 5860, 5906, 5966, 6224, 6330, 6390
Offset: 1

Views

Author

Michel Lagneau, Oct 08 2014

Keywords

Comments

Or numbers n such that the smallest prime divisor of n^2+1 is A002313(8).
a(n)== 30 or 76 (mod 106).

Examples

			76 is in the sequence because 76^2+1= 53*109.
		

Crossrefs

Programs

  • Magma
    [n: n in [2..7000] | PrimeDivisors(n^2+1)[1] eq 53]; // Bruno Berselli, Oct 08 2014
  • Mathematica
    lst={};Do[If[FactorInteger[n^2+1][[1, 1]]==53, AppendTo[lst, n]], {n, 2, 2000}]; lst
    Select[Range[7000],FactorInteger[#^2+1][[1,1]]==53&] (* Harvey P. Dale, Aug 04 2016 *)
    p = 53; ps = Select[Range[p - 1], Mod[#, 4] != 3 && PrimeQ[#] &]; Select[Range[7000], Divisible[(nn = #^2 + 1), p] && ! Or @@ Divisible[nn, ps] &] (* Amiram Eldar, Aug 16 2019 *)
Showing 1-2 of 2 results.