cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248687 Sum of the numbers in row n of the triangular array at A248686.

Original entry on oeis.org

1, 3, 10, 43, 221, 1371, 9696, 78751, 712447, 7173853, 79106413, 952587175, 12397677007, 173864946685, 2609479384942, 41786786069887, 710577455524223, 12795789975272877, 243154034699436147, 4864103085730989101, 102153340062463300261, 2247608818115460466681
Offset: 1

Views

Author

Clark Kimberling, Oct 11 2014

Keywords

Examples

			First seven rows of the array at A248686:
1
1   2
1   3    6
1   6    12    24
1   10   30    60    120
1   20   90    180   360    720
1   35   210   630   1260   2520   5040
The row sums are 1, 3, 10, ...
		

Crossrefs

Cf. A248686.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k<1,
         `if`(n=k, 1, 0), n!/mul(iquo(n+i, k)!, i=0..k-1))
        end:
    a:= n-> add(b(n,k), k=0..n):
    seq(a(n), n=1..22);  # Alois P. Heinz, Feb 20 2024
  • Mathematica
    f[n_, k_] := f[n, k] = n!/Product[Floor[(n + i)/k]!, {i, 0, k - 1}]
    t = Table[f[n, k], {n, 0, 10}, {k, 1, n}];
    u = Flatten[t]  (* A248686 sequence *)
    TableForm[t]    (* A248686 array *)
    Table[Sum[f[n, k], {k, 1, n}], {n, 1, 22}] (* A248687 *)

Formula

a(n) = Sum_{k=1..n} n!/(n(1)!*n(2)!* ... *n(k)!), where n(i) = floor((n + i - 1)/k) for i = 1..k.
a(n) ~ 2 * n!. - Vaclav Kotesovec, Oct 21 2014
a(n) mod 2 = 0 <=> n in { A126646 } \ { 1 }. - Alois P. Heinz, Feb 20 2024