A248687 Sum of the numbers in row n of the triangular array at A248686.
1, 3, 10, 43, 221, 1371, 9696, 78751, 712447, 7173853, 79106413, 952587175, 12397677007, 173864946685, 2609479384942, 41786786069887, 710577455524223, 12795789975272877, 243154034699436147, 4864103085730989101, 102153340062463300261, 2247608818115460466681
Offset: 1
Examples
First seven rows of the array at A248686: 1 1 2 1 3 6 1 6 12 24 1 10 30 60 120 1 20 90 180 360 720 1 35 210 630 1260 2520 5040 The row sums are 1, 3, 10, ...
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..450 (first 100 terms from Clark Kimberling)
Crossrefs
Cf. A248686.
Programs
-
Maple
b:= proc(n, k) option remember; `if`(k<1, `if`(n=k, 1, 0), n!/mul(iquo(n+i, k)!, i=0..k-1)) end: a:= n-> add(b(n,k), k=0..n): seq(a(n), n=1..22); # Alois P. Heinz, Feb 20 2024
-
Mathematica
f[n_, k_] := f[n, k] = n!/Product[Floor[(n + i)/k]!, {i, 0, k - 1}] t = Table[f[n, k], {n, 0, 10}, {k, 1, n}]; u = Flatten[t] (* A248686 sequence *) TableForm[t] (* A248686 array *) Table[Sum[f[n, k], {k, 1, n}], {n, 1, 22}] (* A248687 *)
Formula
a(n) = Sum_{k=1..n} n!/(n(1)!*n(2)!* ... *n(k)!), where n(i) = floor((n + i - 1)/k) for i = 1..k.
a(n) ~ 2 * n!. - Vaclav Kotesovec, Oct 21 2014
a(n) mod 2 = 0 <=> n in { A126646 } \ { 1 }. - Alois P. Heinz, Feb 20 2024