cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A248686 Triangular array of multinomial coefficients: T(n,k) = n!/(n(1)!*n(2)!* ... *n(k)!), where n(i) = floor((n + i - 1)/k) for i = 1 .. k.

Original entry on oeis.org

1, 1, 2, 1, 3, 6, 1, 6, 12, 24, 1, 10, 30, 60, 120, 1, 20, 90, 180, 360, 720, 1, 35, 210, 630, 1260, 2520, 5040, 1, 70, 560, 2520, 5040, 10080, 20160, 40320, 1, 126, 1680, 7560, 22680, 45360, 90720, 181440, 362880, 1, 252, 4200, 25200, 113400, 226800, 453600, 907200, 1814400, 3628800
Offset: 1

Views

Author

Clark Kimberling, Oct 11 2014

Keywords

Comments

T(n,k) is the number of permutations p of [n] such that p(i)Alois P. Heinz, Feb 09 2023

Examples

			First seven rows:
  1
  1    2
  1    3     6
  1    6    12   24
  1   10    30   60    120
  1   20    90  180    360    720
  1   35   210  630   1260   2520   5040
  ...
Writing floor as [ ], the numbers comprising row 4 are
T(4,1) = 4!/[4/1]! = 24/24 = 1
T(4,2) = 4!/([4/2]![5/2]!) = 24/(2*2) = 6
T(4,3) = 4!/([4/3]![5/3]![6/3]!) = 24/(1*1*2) = 12
T(4,4) = 4!/([4/4]![5/4]![6/4]![7/4]!) = 24/(1*1*1*1) = 24.
		

Crossrefs

Main diagonal is A000142.
T(2n,n) gives A000680.
Row sums give A248687.
Cf. A333706.

Programs

  • Maple
    T:= (n, k)-> combinat[multinomial](n, floor((n+i)/k)$i=0..k-1):
    seq(seq(T(n, k), k=1..n), n=1..10);  # Alois P. Heinz, Feb 09 2023
  • Mathematica
    f[n_, k_] := f[n, k] = n!/Product[Floor[(n + i)/k]!, {i, 0, k - 1}]
    t = Table[f[n, k], {n, 0, 10}, {k, 1, n}];
    u = Flatten[t]  (* A248686 sequence *)
    TableForm[t]    (* A248686 array *)
    Table[Sum[f[n, k], {k, 1, n}], {n, 1, 22}] (* A248687 *)

A370505 T(n,k) is the difference between the number of k-dist-increasing and (k-1)-dist-increasing permutations of [n], where p is k-dist-increasing if k>=0 and p(i)=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 5, 6, 12, 0, 1, 9, 20, 30, 60, 0, 1, 19, 70, 90, 180, 360, 0, 1, 34, 175, 420, 630, 1260, 2520, 0, 1, 69, 490, 1960, 2520, 5040, 10080, 20160, 0, 1, 125, 1554, 5880, 15120, 22680, 45360, 90720, 181440, 0, 1, 251, 3948, 21000, 88200, 113400, 226800, 453600, 907200, 1814400
Offset: 0

Views

Author

Alois P. Heinz, Feb 20 2024

Keywords

Examples

			T(0,0) = 1: (only) the empty permutation is 0-dist-increasing.
T(4,2) = 5 = 6 - 1 = |{1234, 1243, 1324, 2134, 2143, 3142}| - |{1234}|.
Permutation 3142 is 2-dist-increasing and 4-dist-increasing but not 3-dist-increasing.
Triangle T(n,k) begins:
  1;
  0, 1;
  0, 1,   1;
  0, 1,   2,    3;
  0, 1,   5,    6,   12;
  0, 1,   9,   20,   30,    60;
  0, 1,  19,   70,   90,   180,   360;
  0, 1,  34,  175,  420,   630,  1260,  2520;
  0, 1,  69,  490, 1960,  2520,  5040, 10080, 20160;
  0, 1, 125, 1554, 5880, 15120, 22680, 45360, 90720, 181440;
  ...
		

Crossrefs

Columns k=0-2 give: A000007, A057427, A014495.
Row sums give A000142.
Main diagonal gives A001710.
T(2n,n+1) gives A000680 for n>=1.
T(2n,n) gives A370576.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k<1,
         `if`(n=k, 1, 0), n!/mul(iquo(n+i, k)!, i=0..k-1))
        end:
    T:= (n, k)-> b(n, k)-b(n, k-1):
    seq(seq(T(n, k), k=0..n), n=0..10);

Formula

T(n,k) = A248686(n,k) - A248686(n,k-1) for k>=2.
Sum_{k=0..n} (1+n-k) * T(n,k) = A248687(n) for n>=1.

A370506 T(n,k) is the number permutations p of [n] that are j-dist-increasing for exactly k distinct values j in [n], where p is j-dist-increasing if j>=0 and p(i)=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 3, 2, 1, 0, 11, 8, 4, 1, 0, 55, 38, 19, 7, 1, 0, 319, 228, 110, 50, 12, 1, 0, 2233, 1574, 775, 322, 115, 20, 1, 0, 17641, 12524, 6216, 2611, 1033, 261, 33, 1, 0, 158769, 112084, 55692, 23585, 9103, 3006, 586, 54, 1, 0, 1578667, 1119496, 556754, 238425, 91764, 33929, 8372, 1304, 88, 1
Offset: 0

Views

Author

Alois P. Heinz, Feb 20 2024

Keywords

Examples

			T(4,1) = 11: 2341, 2431, 3241, 3412, 3421, 4123, 4132, 4213, 4231, 4312, 4321.
T(4,2) = 8: 1342, 1423, 1432, 2314, 2413, 3124, 3142, 3214.
T(4,3) = 4: 1243, 1324, 2134, 2143.
T(4,4) = 1: 1234.
Triangle T(n,k) begins:
  1;
  0,      1;
  0,      1,      1;
  0,      3,      2,     1;
  0,     11,      8,     4,     1;
  0,     55,     38,    19,     7,    1;
  0,    319,    228,   110,    50,   12,    1;
  0,   2233,   1574,   775,   322,  115,   20,   1;
  0,  17641,  12524,  6216,  2611, 1033,  261,  33,  1;
  0, 158769, 112084, 55692, 23585, 9103, 3006, 586, 54, 1;
  ...
		

Crossrefs

Column k=0 gives A000007.
Column k=1 gives A370514 or A370507(n,n) for n>=1.
Row sums give A000142.
T(n,n-1) gives A000071(n+1).

Programs

  • Maple
    q:= proc(l, k) local i; for i from 1 to nops(l)-k do
          if l[i]>=l[i+k] then return 0 fi od; 1
        end:
    b:= proc(n) option remember; add(x^add(
          q(l, j), j=1..n), l=combinat[permute](n))
        end:
    T:= (n, k)-> coeff(b(n), x, k):
    seq(seq(T(n,k), k=0..n), n=0..8);
  • Mathematica
    q[l_, k_] := Module[{i}, For[i = 1, i <= Length[l]-k, i++,
        If[l[[i]] >= l[[i+k]], Return@0]]; 1];
    b[n_] := b[n] = Sum[x^Sum[q[l, j], {j, 1, n}], {l, Permutations[Range[n]]}];
    T[n_, k_] := Coefficient[b[n], x, k];
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 24 2024, after Alois P. Heinz *)

Formula

Sum_{k=0..n} k * T(n,k) = A248687(n) for n>=1.
Showing 1-3 of 3 results.