A248697 Primes of the form k+(k+3)^2 where k is a nonnegative integer.
17, 53, 107, 179, 269, 503, 647, 809, 1187, 1637, 1889, 2447, 2753, 3779, 4157, 4967, 5399, 5849, 6317, 6803, 7307, 7829, 8369, 10709, 11987, 12653, 13337, 14759, 15497, 16253, 17027, 19457, 26729, 29753, 31859, 32939, 35153, 38609, 42227, 44729, 47303, 52667, 55457, 61253, 65789, 68903, 70487, 72089, 73709, 75347
Offset: 1
Crossrefs
Cf. A014209.
Programs
-
Magma
[a: n in [0..250] | IsPrime(a) where a is n^2+7*n+9]; // Vincenzo Librandi, Oct 12 2014
-
Maple
A248697:=n->`if`(isprime(n+(n+3)^2), n+(n+3)^2, NULL): seq(A248697(n), n=1..5*10^2); # Wesley Ivan Hurt, Oct 11 2014
-
Mathematica
f[x_] := x + (x + 3)^2; n = 50; result = {}; counter = 0; number = 0; While[counter < n, value = f[number]; If[PrimeQ[value] == True, AppendTo[result, value];counter = counter + 1]; number = number + 1];result Select[Table[n + (n + 3)^2, {n, 0, 300}], PrimeQ] (* Vincenzo Librandi, Oct 12 2014 *)
-
PARI
for(n=1,10^3,if(isprime(n^2+7*n+9),print1(n^2+7*n+9,", "))) \\ Derek Orr, Oct 12 2014
Comments