cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248697 Primes of the form k+(k+3)^2 where k is a nonnegative integer.

Original entry on oeis.org

17, 53, 107, 179, 269, 503, 647, 809, 1187, 1637, 1889, 2447, 2753, 3779, 4157, 4967, 5399, 5849, 6317, 6803, 7307, 7829, 8369, 10709, 11987, 12653, 13337, 14759, 15497, 16253, 17027, 19457, 26729, 29753, 31859, 32939, 35153, 38609, 42227, 44729, 47303, 52667, 55457, 61253, 65789, 68903, 70487, 72089, 73709, 75347
Offset: 1

Views

Author

Michael Savoric, Oct 11 2014

Keywords

Comments

Primes > 3 in A014209. - Klaus Purath, Dec 10 2020

Crossrefs

Cf. A014209.

Programs

  • Magma
    [a: n in [0..250] | IsPrime(a) where a is n^2+7*n+9]; // Vincenzo Librandi, Oct 12 2014
    
  • Maple
    A248697:=n->`if`(isprime(n+(n+3)^2), n+(n+3)^2, NULL): seq(A248697(n), n=1..5*10^2); # Wesley Ivan Hurt, Oct 11 2014
  • Mathematica
    f[x_] := x + (x + 3)^2;
    n = 50; result = {}; counter = 0; number = 0;
    While[counter < n,
    value = f[number];
    If[PrimeQ[value] == True, AppendTo[result, value];counter = counter + 1];
    number = number + 1];result
    Select[Table[n + (n + 3)^2, {n, 0, 300}], PrimeQ] (* Vincenzo Librandi, Oct 12 2014 *)
  • PARI
    for(n=1,10^3,if(isprime(n^2+7*n+9),print1(n^2+7*n+9,", "))) \\ Derek Orr, Oct 12 2014