A248726 Decimal expansion of Sum_{k>=1} 1/(9^k - 1).
1, 3, 9, 0, 4, 5, 1, 1, 7, 6, 6, 2, 1, 8, 8, 1, 2, 9, 3, 5, 8, 7, 2, 8, 4, 7, 4, 3, 6, 9, 0, 8, 9, 0, 5, 2, 1, 3, 9, 3, 6, 2, 6, 4, 7, 0, 6, 7, 8, 1, 9, 6, 0, 9, 5, 5, 1, 0, 3, 5, 4, 9, 3, 4, 7, 9, 6, 7, 0, 2, 0, 1, 4, 5, 3, 6, 6, 6, 6, 0, 7, 9, 8, 8, 6, 3, 3, 7, 9, 8, 1, 3, 5, 7, 6, 5, 5, 0, 5, 7, 9, 9, 5, 5, 3
Offset: 0
Examples
0.13904511766218812935872847436908905213936264706781960955103549347967020145366...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
Programs
-
Maple
evalf(sum(1/(9^k-1), k=1..infinity),120) # Vaclav Kotesovec, Oct 18 2014 # second program with faster converging series evalf( add( (1/9)^(n^2)*(1 + 2/(9^n - 1)), n = 1..10), 105); # Peter Bala, Jan 30 2022
-
Mathematica
x = 1/9; RealDigits[ Sum[ DivisorSigma[0, k] x^k, {k, 1000}], 10, 105][[1]] (* after an observation and the formula of Amarnath Murthy, see A073668 *)
-
PARI
suminf(k=1, 1/(9^k-1)) \\ Michel Marcus, Oct 18 2014
Formula
Equals Sum_{k>=1} d(k)/9^k, where d(k) is the number of divisors of k (A000005). - Amiram Eldar, Jun 22 2020