cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A024101 a(n) = 9^n-1.

Original entry on oeis.org

0, 8, 80, 728, 6560, 59048, 531440, 4782968, 43046720, 387420488, 3486784400, 31381059608, 282429536480, 2541865828328, 22876792454960, 205891132094648, 1853020188851840, 16677181699666568, 150094635296999120
Offset: 0

Views

Author

Keywords

Comments

Number of integers from 0 to 10^(n+1)-1 that lack any particular digit other than 0. - Robert G. Wilson v, Apr 14 2003
These are the numbers 888...8 in base 9. - Zerinvary Lajos, Nov 21 2007

Crossrefs

Programs

Formula

G.f.: 1/(1-9*x)-1/(1-x). - Mohammad K. Azarian, Jan 14 2009
E.g.f.: e^(9*x)-e^x. - Mohammad K. Azarian, Jan 14 2009
a(n) = A024023(n)*A034472(n). - Reinhard Zumkeller, Feb 14 2009
a(n) = 9*a(n-1)+8 for n>0, a(0)=0. - Vincenzo Librandi, Nov 19 2010
a(0)=0, a(1)=8; for n>1, a(n) = 10*a(n-1)-9*a(n-2). - Harvey P. Dale, Apr 14 2015
a(n) = Sum_{i=1..n} 8^i*binomial(n,n-i) for n>0, a(0)=0. - Bruno Berselli, Nov 11 2015
a(n) = A001019(n) - 1. - Sean A. Irvine, Jun 19 2019
Sum_{n>=1} 1/a(n) = A248726. - Amiram Eldar, Nov 13 2020

A073668 Decimal expansion of Sum_{k>=1} 1/(10^k - 1).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4, 6, 2, 8, 2, 6, 4, 4, 4, 9, 2, 4, 4, 8, 2, 8, 2, 6, 6, 4, 3, 0, 3, 6, 4, 6, 2, 8, 4, 8, 4, 4, 3, 2, 2, 4, 6, 7, 4, 8, 2, 6, 4, 8, 3, 2, 2, 4, 6, 6, 4, 8, 3, 0, 5, 4, 3, 2, 4, 4, 4, 8, 3, 2, 4, 6, 4, 4, 5, 2, 2, 6, 6, 9, 2, 8, 2, 8, 8
Offset: 0

Views

Author

Robert G. Wilson v, Aug 29 2002

Keywords

Comments

Parallels A000005 up to a(46).
Sum_{k>=1} x^k/(1-x^k) = Sum_{k>=1} tau(k)*x^k. Choosing x = 1/10 gives the result. - Amarnath Murthy, Oct 21 2002

Examples

			0.122324243426244526264428344628264449244... = A065444/9.
		

References

  • Amarnath Murthy, Some interesting results on d(N), the number of divisors of a natural number, page 463, Octogon Mathematical Magazine, Vol. 8 No. 2, October 2000.

Crossrefs

Programs

  • Maple
    evalf(Sum(1/(10^k - 1), k = 1..infinity), 200) # Vaclav Kotesovec, Jul 16 2019
    # second program with faster converging series after Joerg Arndt
    evalf( add( (1/10)^(n^2)*(1 + 2/(10^n - 1)), n = 1..8), 105); # Peter Bala, Jan 30 2022
  • Mathematica
    RealDigits[ N[ Sum[1/(10^k - 1), {k, 1, Infinity}], 120]] [[1]]
  • PARI
    suminf(k=1,1/(10^k-1)) \\ Charles R Greathouse IV, Oct 05 2014

Formula

From Eric Desbiaux, Mar 11 2009: (Start)
Equals Sum_{k >= 1} 1/((2^k*5^k)-1).
Equals Sum_{k >= 1} (1/2^k)*(1/5^k)/(1-((1/2^k)*(1/5^k))).
Sum_{k >= 1} 1/(5^k) = 1/4.
Sum_{k >= 1} 1/(2^k) = 1.
Sum_{k >= 1} (1/5^k)/(1-((1/2^k)*(1/5^k))) = 0.2726344339156...
Sum_{k >= 1} (1/2^k)/(1-((1/2^k)*(1/5^k))) = 1.0582125127815...
Sum_{k >= 1} 1/(1-((1/2^k)*(1/5^k))) - 1 = A073668.
(End)
Fast computation via Lambert series: 0.122324243426... = Sum_{n>=1} x^(n^2)*(1+x^n)/(1-x^n) where x=1/10. - Joerg Arndt, Oct 18 2020

A214369 Decimal expansion of Sum_{n>=1} 1/(3^n-1).

Original entry on oeis.org

6, 8, 2, 1, 5, 3, 5, 0, 2, 6, 0, 5, 2, 3, 8, 0, 6, 6, 7, 6, 1, 2, 6, 3, 1, 8, 6, 2, 2, 6, 6, 2, 4, 0, 0, 9, 6, 4, 9, 1, 9, 0, 2, 4, 8, 3, 2, 6, 9, 0, 3, 4, 1, 9, 2, 2, 8, 2, 5, 7, 8, 4, 7, 1, 3, 6, 7, 7, 1, 8, 3, 4, 7, 7, 4, 1, 7, 8, 7, 3, 2, 9, 0, 0, 9, 6, 2, 1, 2, 6, 9, 0, 3, 0, 4, 5, 3, 3, 1, 3, 7, 5, 0, 3, 2
Offset: 0

Views

Author

R. J. Mathar, Jul 14 2012

Keywords

Examples

			Equals 0.6821535026052380667...
		

Crossrefs

Programs

  • Maple
    evalf(sum(1/(3^k-1), k=1..infinity), 120); # Vaclav Kotesovec, Oct 18 2014
    # second program with faster converging series
    evalf( add( (1/3)^(n^2)*(1 + 2/(3^n - 1)), n = 1..14 ), 105); # Peter Bala, Jan 30 2022
  • Mathematica
    RealDigits[ NSum[1/(3^n - 1), {n, 1, Infinity}, WorkingPrecision -> 110, NSumTerms -> 100], 10, 105] // First (* or *) 1 - (Log[2] + QPolyGamma[0, 1, 1/3])/Log[3] // RealDigits[#, 10, 105]& // First (* Jean-François Alcover, Jun 05 2013 *)
    x = 1/3; RealDigits[ Sum[ DivisorSigma[0, k] x^k, {k, 1000}], 10, 105][[1]] (* Robert G. Wilson v, Oct 12 2014 after an observation and the formula of Amarnath Murthy, see A073668 *)
  • PARI
    suminf(n=1, 1/(3^n-1)) \\ Michel Marcus, Mar 11 2017

Formula

Equals Sum_{n>=1} 1/A024023(n).
Equals Sum_{k>=1} d(k)/3^k, where d(k) is the number of divisors of k (A000005). - Amiram Eldar, May 17 2020

Extensions

More terms from Jean-François Alcover, Feb 12 2013

A248721 Decimal expansion of Sum_{k>=1} 1/(4^k - 1).

Original entry on oeis.org

4, 2, 1, 0, 9, 7, 6, 8, 6, 0, 3, 3, 4, 2, 3, 7, 7, 7, 2, 9, 5, 9, 9, 0, 8, 8, 7, 9, 6, 7, 7, 1, 3, 0, 4, 8, 9, 6, 1, 4, 4, 1, 3, 3, 6, 3, 2, 4, 1, 1, 5, 4, 0, 4, 6, 0, 5, 9, 2, 0, 7, 9, 6, 7, 1, 2, 7, 7, 1, 3, 7, 0, 4, 8, 8, 7, 3, 9, 8, 0, 2, 7, 5, 1, 9, 0, 3, 6, 8, 4, 7, 5, 8, 6, 5, 0, 7, 9, 5, 3, 9, 2, 8, 4, 5
Offset: 0

Views

Author

Robert G. Wilson v, Oct 12 2014

Keywords

Examples

			0.4210976860334237772959908879677130489614413363241154046059207967127713704887...
		

Crossrefs

Programs

  • Maple
    evalf(sum(1/(4^k-1), k=1..infinity),120) # Vaclav Kotesovec, Oct 18 2014
    # second program with faster converging series after Joerg Arndt
    evalf( add( (1/4)^(n^2)*(1 + 2/(4^n - 1)), n = 1..13), 105); # Peter Bala, Jan 30 2022
  • Mathematica
    x = 1/4; RealDigits[ Sum[ DivisorSigma[0, k] x^k, {k, 1000}], 10, 105][[1]] (* after an observation and the formula of Amarnath Murthy, see A073668 *)
  • PARI
    suminf(k=1, 1/(4^k-1)) \\ Michel Marcus, Oct 18 2014

Formula

Equals Sum_{k>=1} x^(k^2)*(1+x^k)/(1-x^k) where x = 1/4 (the Lambert series evaluated at 1/4). - Joerg Arndt, Jun 03 2020
Equals Sum_{k>=1} d(k)/4^k, where d(k) is the number of divisors of k (A000005). - Amiram Eldar, Jun 22 2020

A248722 Decimal expansion of Sum_{k>=1} 1/(5^k - 1).

Original entry on oeis.org

3, 0, 1, 7, 3, 3, 8, 5, 3, 5, 9, 7, 9, 7, 2, 4, 5, 7, 9, 4, 8, 1, 6, 2, 1, 5, 9, 3, 9, 3, 9, 9, 1, 1, 9, 2, 6, 2, 3, 0, 0, 9, 4, 3, 1, 5, 1, 7, 1, 5, 7, 7, 2, 0, 3, 9, 5, 7, 9, 1, 9, 2, 3, 3, 1, 8, 3, 7, 9, 8, 2, 5, 8, 9, 2, 0, 3, 4, 3, 3, 5, 2, 7, 5, 8, 5, 9, 4, 9, 2, 9, 7, 8, 7, 5, 8, 1, 6, 9, 6, 8, 3, 5, 5, 7
Offset: 0

Views

Author

Robert G. Wilson v, Oct 12 2014

Keywords

Examples

			0.301733853597972457948162159393991192623009431517157720395791923318379825892...
		

Crossrefs

Programs

  • Maple
    evalf( add( (1/5)^(n^2)*(1 + 2/(5^n - 1)), n = 1..12), 105); # Peter Bala, Jan 30 2022
  • Mathematica
    x = 1/5; RealDigits[ Sum[ DivisorSigma[0, k] x^k, {k, 1000}], 10, 105][[1]] (* after an observation and the formula of Amarnath Murthy, see A073668 *)
  • PARI
    sumpos(k=1,1/(5^k-1)) \\ M. F. Hasler, Oct 15 2014

Formula

Equals Sum_{k>=1} d(k)/5^k, where d(k) is the number of divisors of k (A000005). - Amiram Eldar, Jun 22 2020

A248723 Decimal expansion of the Sum_{k>=1} 1/(6^k - 1).

Original entry on oeis.org

2, 3, 4, 1, 4, 9, 1, 3, 0, 1, 3, 4, 8, 0, 9, 2, 0, 6, 4, 8, 5, 1, 1, 1, 6, 7, 2, 8, 1, 3, 8, 7, 2, 9, 1, 8, 5, 4, 6, 3, 6, 1, 0, 3, 4, 7, 8, 6, 5, 1, 3, 8, 9, 8, 5, 2, 2, 4, 2, 1, 3, 8, 6, 7, 1, 0, 2, 3, 8, 1, 9, 8, 6, 6, 2, 8, 7, 9, 2, 3, 2, 2, 5, 6, 7, 8, 8, 7, 9, 5, 0, 1, 8, 7, 8, 3, 9, 1, 2, 6, 6, 5, 5, 3, 4
Offset: 0

Views

Author

Robert G. Wilson v, Oct 12 2014

Keywords

Examples

			0.2341491301348092064851116728138729185463610347865138985224213867102381986628...
		

Crossrefs

Programs

  • Maple
    evalf(sum(1/(6^k-1), k=1..infinity),120); # Vaclav Kotesovec, Oct 18 2014
    # second program with faster converging series
    evalf( add( (1/6)^(n^2)*(1 + 2/(6^n - 1)), n = 1..11), 105); # Peter Bala, Jan 30 2022
  • Mathematica
    x = 1/6; RealDigits[ Sum[ DivisorSigma[0, k] x^k, {k, 1000}], 10, 105][[1]] (* after an observation and the formula of Amarnath Murthy, see A073668 *)
  • PARI
    suminf(k=1, 1/(6^k-1)) \\ Michel Marcus, Oct 18 2014

Formula

Equals Sum_{k>=1} d(k)/6^k, where d(k) is the number of divisors of k (A000005). - Amiram Eldar, Jun 22 2020

A248724 Decimal expansion of Sum_{k>=1} 1/(7^k - 1).

Original entry on oeis.org

1, 9, 0, 9, 1, 0, 0, 6, 2, 4, 1, 0, 2, 6, 1, 5, 7, 8, 2, 0, 2, 1, 9, 9, 6, 4, 4, 4, 1, 7, 6, 9, 1, 1, 6, 8, 7, 6, 9, 2, 6, 8, 4, 7, 6, 0, 0, 8, 2, 6, 6, 4, 0, 8, 3, 3, 4, 7, 7, 1, 1, 0, 8, 6, 4, 0, 9, 9, 9, 6, 7, 5, 5, 8, 4, 6, 3, 0, 1, 4, 4, 0, 3, 8, 0, 0, 9, 1, 1, 6, 1, 6, 5, 9, 7, 0, 9, 1, 1, 9, 3, 4, 5, 6, 1
Offset: 0

Views

Author

Robert G. Wilson v, Oct 12 2014

Keywords

Examples

			0.1909100624102615782021996444176911687692684760082664083347711086409996755846...
		

Crossrefs

Programs

  • Maple
    evalf(sum(1/(7^k-1), k=1..infinity),120) # Vaclav Kotesovec, Oct 18 2014
    # second program with faster converging series
    evalf( add( (1/7)^(n^2)*(1 + 2/(7^n - 1)), n = 1..11), 105); # Peter Bala, Jan 30 2022
  • Mathematica
    x = 1/7; RealDigits[ Sum[ DivisorSigma[0, k] x^k, {k, 1000}], 10, 105][[1]] (* after an observation and the formula of Amarnath Murthy, see A073668 *)
  • PARI
    suminf(k=1, 1/(7^k-1)) \\ Michel Marcus, Oct 18 2014

Formula

Equals Sum_{k>=1} d(k)/7^k, where d(k) is the number of divisors of k (A000005). - Amiram Eldar, Jun 22 2020

A248725 Decimal expansion of Sum_{k>=1} 1/(8^k - 1).

Original entry on oeis.org

1, 6, 0, 9, 6, 6, 1, 8, 4, 3, 1, 5, 0, 6, 2, 3, 9, 6, 8, 0, 5, 3, 0, 2, 5, 6, 4, 1, 4, 3, 6, 4, 2, 8, 8, 5, 5, 5, 0, 7, 4, 3, 8, 5, 6, 0, 2, 5, 3, 2, 8, 3, 4, 6, 3, 6, 0, 8, 3, 5, 9, 1, 8, 6, 4, 7, 8, 2, 3, 9, 4, 0, 8, 5, 8, 0, 0, 6, 3, 6, 9, 1, 7, 7, 9, 2, 3, 4, 5, 3, 1, 0, 0, 9, 3, 2, 5, 4, 0, 2, 5, 2, 9, 6, 4
Offset: 0

Views

Author

Robert G. Wilson v, Oct 12 2014

Keywords

Examples

			0.16096618431506239680530256414364288555074385602532834636083591864782394085800...
		

Crossrefs

Programs

  • Maple
    evalf(sum(1/(8^k-1), k=1..infinity),120) # Vaclav Kotesovec, Oct 18 2014
    # second program with faster converging series
    evalf( add( (1/8)^(n^2)*(1 + 2/(8^n - 1)), n = 1..10), 105); # Peter Bala, Jan 30 2022
  • Mathematica
    x = 1/8; RealDigits[ Sum[ DivisorSigma[0, k] x^k, {k, 1000}], 10, 105][[1]] (* after an observation and the formula of Amarnath Murthy, see A073668 *)
  • PARI
    suminf(k=1, 1/(8^k-1)) \\ Michel Marcus, Oct 18 2014

Formula

Equals Sum_{k>=1} d(k)/8^k, where d(k) is the number of divisors of k (A000005). - Amiram Eldar, Jun 22 2020

A048334 Numbers that are repdigits in base 9.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 20, 30, 40, 50, 60, 70, 80, 91, 182, 273, 364, 455, 546, 637, 728, 820, 1640, 2460, 3280, 4100, 4920, 5740, 6560, 7381, 14762, 22143, 29524, 36905, 44286, 51667, 59048, 66430, 132860, 199290, 265720, 332150, 398580
Offset: 0

Views

Author

Patrick De Geest, Feb 15 1999

Keywords

Crossrefs

Programs

  • Mathematica
    Union[Flatten[Table[FromDigits[PadRight[{}, n, d], 9], {n, 0, 40}, {d, 8}]]] (* Vincenzo Librandi, Feb 06 2014 *)
    Table[FromDigits[IntegerDigits[(n-9*Floor[(n-1)/9])*(10^Floor[(n+8)/9]-1)/9],9],{n,0,50}] (* Zak Seidov, Mar 15 2015 *)
    f[n_] := Block[{r = FromDigits[#, 9] & /@ (Table[1, {#}] & /@ Range@ n)},
    Sort@ Flatten[Times[r, #] & /@ Range@ 8]]; f[6] (* Michael De Vlieger, Mar 15 2015 *)
    LinearRecurrence[{0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,-9},{0,1,2,3,4,5,6,7,8,10,20,30,40,50,60,70},47] (* Ray Chandler, Jul 15 2015 *)
  • PARI
    lista(nn) = for (n=0, nn, if ((n==0) || (#Set(digits(n, 9)) == 1), print1(n, ", "))); \\ Michel Marcus, Mar 17 2015

Formula

G.f.: x*(1+2*x+3*x^2+4*x^3+5*x^4+6*x^5+7*x^6+8*x^7) / ( (x-1) *(1+x) *(x^2+1) *(3*x^4-1) *(3*x^4+1) *(x^4+1) ). - R. J. Mathar, Mar 14 2015
a(n) = 10*a(n-8) -9*a(n-16). - R. J. Mathar, Mar 14 2015
Sum_{n>=1} 1/a(n) = (761/35) * A248726 = 3.02323812974071904119... - Amiram Eldar, Jan 21 2022
Showing 1-9 of 9 results.