cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A024023 a(n) = 3^n - 1.

Original entry on oeis.org

0, 2, 8, 26, 80, 242, 728, 2186, 6560, 19682, 59048, 177146, 531440, 1594322, 4782968, 14348906, 43046720, 129140162, 387420488, 1162261466, 3486784400, 10460353202, 31381059608, 94143178826, 282429536480, 847288609442, 2541865828328, 7625597484986, 22876792454960
Offset: 0

Views

Author

Keywords

Comments

Number of different directions along lines and hyper-diagonals in an n-dimensional cubic lattice for the attacking queens problem (A036464 in n=2, A068940 in n=3 and A068941 in n=4). The n-dimensional direction vectors have the a(n)+1 Cartesian coordinates (i,j,k,l,...) where i,j,k,l,... = -1, 0, or +1, excluding the zero-vector i=j=k=l=...=0. The corresponding hyper-line count is A003462. - R. J. Mathar, May 01 2006
Total number of sequences of length m=1,...,n with nonzero integer elements satisfying the condition Sum_{k=1..m} |n_k| <= n. See the K. A. Meissner link p. 6 (with a typo: it should be 3^([2a]-1)-1). - Wolfdieter Lang, Jan 21 2008
Let P(A) be the power set of an n-element set A and R be a relation on P(A) such that for all x, y of P(A), xRy if x and y are disjoint and either 0) x is a proper subset of y or y is a proper subset of x, or 1) x is not a subset of y and y is not a subset of x. Then a(n) = |R|. - Ross La Haye, Mar 19 2009
Number of neighbors in Moore's neighborhood in n dimensions. - Dmitry Zaitsev, Nov 30 2015
Number of terms in conjunctive normal form of Boolean expression with n variables. E.g., a(2) = 8: [~x, ~y, x, y, ~x|~y, ~x|y, x|~y, x|y]. - Yuchun Ji, May 12 2023
Number of rays of the Coxeter arrangement of type B_n. Equivalently, number of facets of the n-dimensional type B permutahedron. - Jose Bastidas, Sep 12 2023

Examples

			From _Zerinvary Lajos_, Jan 14 2007: (Start)
Ternary......decimal:
0...............0
2...............2
22..............8
222............26
2222...........80
22222.........242
222222........728
2222222......2186
22222222.....6560
222222222...19682
2222222222..59048
etc...........etc.
(End)
Sequence combinatorics: n=3: With length m=1: [1],[2],[3] each with 2 signs, with m=2: [1,1], [1,2], [2,1], each 2^2 = 4 times from choosing signs; m=3: [1,1,1] coming in 2^3 signed versions: 3*2 + 3*4 + 1*8 = 26 = a(3). The order is important, hence the M_0 multinomials A048996 enter as factors.
A027902 gives the 384 divisors of a(24). - _Reinhard Zumkeller_, Mar 11 2010
		

References

  • Mordechai Ben-Ari, Mathematical Logic for Computer Science, Third edition, 173-203.

Crossrefs

Cf. triangle A013609.
Cf. second column of A145901.

Programs

Formula

a(n) = A000244(n) - 1.
a(n) = 2*A003462(n). - R. J. Mathar, May 01 2006
A128760(a(n)) > 0. - Reinhard Zumkeller, Mar 25 2007
G.f.: 2*x/((-1+x)*(-1+3*x)) = 1/(-1+x) - 1/(-1+3*x). - R. J. Mathar, Nov 19 2007
a(n) = Sum_{k=1..n} Sum_{m=1..k} binomial(k-1,m-1)*2^m, n >= 1. a(0)=0. From the sequence combinatorics mentioned above. Twice partial sums of powers of 3.
E.g.f.: e^(3*x) - e^x. - Mohammad K. Azarian, Jan 14 2009
a(n) = A024101(n)/A034472(n). - Reinhard Zumkeller, Feb 14 2009
a(n) = 3*a(n-1) + 2 (with a(0)=0). - Vincenzo Librandi, Nov 19 2010
E.g.f.: -E(0) where E(k) = 1 - 3^k/(1 - x/(x - 3^k*(k+1)/E(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Dec 06 2012
a(n) = A227048(n,A020914(n)). - Reinhard Zumkeller, Jun 30 2013
Sum_{n>=1} 1/a(n) = A214369. - Amiram Eldar, Nov 11 2020
a(n) = Sum_{k=1..n} 2^k*binomial(n,k). - Ridouane Oudra, Jun 15 2025
From Peter Bala, Jul 01 2025: (Start)
For n >= 1, a(2*n)/a(n) = A034472(n) and a(3*n)/a(n) = A034513(n).
Modulo differences in offsets, exp( Sum_{n >= 1} a(k*n)/a(n)*x^n/n ) is the o.g.f. of A003462 (k = 2), A006100 (k = 3), A006101 (k = 4), A006102 (k = 5), A022196 (k = 6), A022197 (k = 7), A022198 (k = 8), A022199 (k = 9), A022200 (k = 10), A022201 (k = 11), A022202 (k = 12) and A022203 (k = 13).
The following are all examples of telescoping series:
Sum_{n >= 1} 3^n/(a(n)*a(n+1)) = 1/2^2; Sum_{n >= 1} 3^n/(a(n)*a(n+1)*a(n+2)) = 1/(2*8^2).
In general, for k >= 1, Sum_{n >= 1} 3^n/(a(n)*a(n+1)*...*a(n+k)) = 1/(a(1)*a(2)*...*a(k)*a(k)).
Sum_{n >= 1} 3^n/(a(n)*a(n+2)) = 5/64; Sum_{n >= 1} (-3)^n/(a(n)*a(n+2)) = -3/64.
Sum_{n >= 1} 3^n/(a(n)*a(n+4)) = 703/83200; Sum_{n >= 1} (-3)^n/(a(n)*a(n+4)) = - 417/83200. (End)

A073668 Decimal expansion of Sum_{k>=1} 1/(10^k - 1).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4, 6, 2, 8, 2, 6, 4, 4, 4, 9, 2, 4, 4, 8, 2, 8, 2, 6, 6, 4, 3, 0, 3, 6, 4, 6, 2, 8, 4, 8, 4, 4, 3, 2, 2, 4, 6, 7, 4, 8, 2, 6, 4, 8, 3, 2, 2, 4, 6, 6, 4, 8, 3, 0, 5, 4, 3, 2, 4, 4, 4, 8, 3, 2, 4, 6, 4, 4, 5, 2, 2, 6, 6, 9, 2, 8, 2, 8, 8
Offset: 0

Views

Author

Robert G. Wilson v, Aug 29 2002

Keywords

Comments

Parallels A000005 up to a(46).
Sum_{k>=1} x^k/(1-x^k) = Sum_{k>=1} tau(k)*x^k. Choosing x = 1/10 gives the result. - Amarnath Murthy, Oct 21 2002

Examples

			0.122324243426244526264428344628264449244... = A065444/9.
		

References

  • Amarnath Murthy, Some interesting results on d(N), the number of divisors of a natural number, page 463, Octogon Mathematical Magazine, Vol. 8 No. 2, October 2000.

Crossrefs

Programs

  • Maple
    evalf(Sum(1/(10^k - 1), k = 1..infinity), 200) # Vaclav Kotesovec, Jul 16 2019
    # second program with faster converging series after Joerg Arndt
    evalf( add( (1/10)^(n^2)*(1 + 2/(10^n - 1)), n = 1..8), 105); # Peter Bala, Jan 30 2022
  • Mathematica
    RealDigits[ N[ Sum[1/(10^k - 1), {k, 1, Infinity}], 120]] [[1]]
  • PARI
    suminf(k=1,1/(10^k-1)) \\ Charles R Greathouse IV, Oct 05 2014

Formula

From Eric Desbiaux, Mar 11 2009: (Start)
Equals Sum_{k >= 1} 1/((2^k*5^k)-1).
Equals Sum_{k >= 1} (1/2^k)*(1/5^k)/(1-((1/2^k)*(1/5^k))).
Sum_{k >= 1} 1/(5^k) = 1/4.
Sum_{k >= 1} 1/(2^k) = 1.
Sum_{k >= 1} (1/5^k)/(1-((1/2^k)*(1/5^k))) = 0.2726344339156...
Sum_{k >= 1} (1/2^k)/(1-((1/2^k)*(1/5^k))) = 1.0582125127815...
Sum_{k >= 1} 1/(1-((1/2^k)*(1/5^k))) - 1 = A073668.
(End)
Fast computation via Lambert series: 0.122324243426... = Sum_{n>=1} x^(n^2)*(1+x^n)/(1-x^n) where x=1/10. - Joerg Arndt, Oct 18 2020

A248721 Decimal expansion of Sum_{k>=1} 1/(4^k - 1).

Original entry on oeis.org

4, 2, 1, 0, 9, 7, 6, 8, 6, 0, 3, 3, 4, 2, 3, 7, 7, 7, 2, 9, 5, 9, 9, 0, 8, 8, 7, 9, 6, 7, 7, 1, 3, 0, 4, 8, 9, 6, 1, 4, 4, 1, 3, 3, 6, 3, 2, 4, 1, 1, 5, 4, 0, 4, 6, 0, 5, 9, 2, 0, 7, 9, 6, 7, 1, 2, 7, 7, 1, 3, 7, 0, 4, 8, 8, 7, 3, 9, 8, 0, 2, 7, 5, 1, 9, 0, 3, 6, 8, 4, 7, 5, 8, 6, 5, 0, 7, 9, 5, 3, 9, 2, 8, 4, 5
Offset: 0

Views

Author

Robert G. Wilson v, Oct 12 2014

Keywords

Examples

			0.4210976860334237772959908879677130489614413363241154046059207967127713704887...
		

Crossrefs

Programs

  • Maple
    evalf(sum(1/(4^k-1), k=1..infinity),120) # Vaclav Kotesovec, Oct 18 2014
    # second program with faster converging series after Joerg Arndt
    evalf( add( (1/4)^(n^2)*(1 + 2/(4^n - 1)), n = 1..13), 105); # Peter Bala, Jan 30 2022
  • Mathematica
    x = 1/4; RealDigits[ Sum[ DivisorSigma[0, k] x^k, {k, 1000}], 10, 105][[1]] (* after an observation and the formula of Amarnath Murthy, see A073668 *)
  • PARI
    suminf(k=1, 1/(4^k-1)) \\ Michel Marcus, Oct 18 2014

Formula

Equals Sum_{k>=1} x^(k^2)*(1+x^k)/(1-x^k) where x = 1/4 (the Lambert series evaluated at 1/4). - Joerg Arndt, Jun 03 2020
Equals Sum_{k>=1} d(k)/4^k, where d(k) is the number of divisors of k (A000005). - Amiram Eldar, Jun 22 2020

A048328 Numbers that are repdigits in base 3.

Original entry on oeis.org

0, 1, 2, 4, 8, 13, 26, 40, 80, 121, 242, 364, 728, 1093, 2186, 3280, 6560, 9841, 19682, 29524, 59048, 88573, 177146, 265720, 531440, 797161, 1594322, 2391484, 4782968, 7174453, 14348906, 21523360, 43046720, 64570081, 129140162, 193710244, 387420488, 581130733
Offset: 0

Views

Author

Patrick De Geest, Feb 15 1999

Keywords

Comments

Case for base 2 see A000225: 2^n - 1.
If the sequence b(n) represents the number of paths of length n, n >= 1, starting at node 1 and ending at nodes 1, 2, 3 and 4 on the path graph P_5 then a(n-1) = b(n) - 1. - Johannes W. Meijer, May 29 2010

Crossrefs

Programs

  • Maple
    nmax := 35; a(0) := 0: for n from 1 to nmax do a(2*n) := a(2*n-2) + 2*3^(n-1); od: a(1) := 1: for n from 1 to nmax do a(2*n+1) := 1*a(2*n-1) + 3^n; od: seq(a(n), n=0..nmax);
    # End program 1
    with(GraphTheory): G := PathGraph(5): A:= AdjacencyMatrix(G): nmax := nmax; for n from 1 to nmax+1 do B(n) := A^n; b(n) := add(B(n)[1, k], k=1..4); a1(n-1) := b(n)-1; od: seq(a1(n), n=0..nmax);
    # End program 2
    # From Johannes W. Meijer, May 29 2010, revised Sep 23 2012
    # third Maple program:
    a:= n->(<<0|1>, <-3|4>>^iquo(n, 2, 'r').`if`(r=0, <<0, 2>>, <<1, 4>>))[1, 1]:
    seq (a(n), n=0..60);  # Alois P. Heinz, Sep 23 2012
  • Mathematica
    Rest[FromDigits[#, 3]&/@Flatten[Table[{PadRight[{1}, n, 1], PadRight[{2}, n, 2]}, {n, 0, 20}], 1]] (* Harvey P. Dale, Feb 03 2011 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -3,0,4,0]^n*[0;1;2;4])[1,1] \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: (2*x^2+x)/(1-4*x^2+3*x^4). - Alois P. Heinz, Sep 23 2012
Sum_{n>=1} 1/a(n) = 3 * A214369 = 2.04646050781571420028... - Amiram Eldar, Jan 21 2022
a(n) = (3^(n/2)*(sqrt(3) + 2 - (-1)^n*(sqrt(3) - 2)) - 3 - (-1)^n)/4. - Stefano Spezia, Feb 18 2022

A248722 Decimal expansion of Sum_{k>=1} 1/(5^k - 1).

Original entry on oeis.org

3, 0, 1, 7, 3, 3, 8, 5, 3, 5, 9, 7, 9, 7, 2, 4, 5, 7, 9, 4, 8, 1, 6, 2, 1, 5, 9, 3, 9, 3, 9, 9, 1, 1, 9, 2, 6, 2, 3, 0, 0, 9, 4, 3, 1, 5, 1, 7, 1, 5, 7, 7, 2, 0, 3, 9, 5, 7, 9, 1, 9, 2, 3, 3, 1, 8, 3, 7, 9, 8, 2, 5, 8, 9, 2, 0, 3, 4, 3, 3, 5, 2, 7, 5, 8, 5, 9, 4, 9, 2, 9, 7, 8, 7, 5, 8, 1, 6, 9, 6, 8, 3, 5, 5, 7
Offset: 0

Views

Author

Robert G. Wilson v, Oct 12 2014

Keywords

Examples

			0.301733853597972457948162159393991192623009431517157720395791923318379825892...
		

Crossrefs

Programs

  • Maple
    evalf( add( (1/5)^(n^2)*(1 + 2/(5^n - 1)), n = 1..12), 105); # Peter Bala, Jan 30 2022
  • Mathematica
    x = 1/5; RealDigits[ Sum[ DivisorSigma[0, k] x^k, {k, 1000}], 10, 105][[1]] (* after an observation and the formula of Amarnath Murthy, see A073668 *)
  • PARI
    sumpos(k=1,1/(5^k-1)) \\ M. F. Hasler, Oct 15 2014

Formula

Equals Sum_{k>=1} d(k)/5^k, where d(k) is the number of divisors of k (A000005). - Amiram Eldar, Jun 22 2020

A248723 Decimal expansion of the Sum_{k>=1} 1/(6^k - 1).

Original entry on oeis.org

2, 3, 4, 1, 4, 9, 1, 3, 0, 1, 3, 4, 8, 0, 9, 2, 0, 6, 4, 8, 5, 1, 1, 1, 6, 7, 2, 8, 1, 3, 8, 7, 2, 9, 1, 8, 5, 4, 6, 3, 6, 1, 0, 3, 4, 7, 8, 6, 5, 1, 3, 8, 9, 8, 5, 2, 2, 4, 2, 1, 3, 8, 6, 7, 1, 0, 2, 3, 8, 1, 9, 8, 6, 6, 2, 8, 7, 9, 2, 3, 2, 2, 5, 6, 7, 8, 8, 7, 9, 5, 0, 1, 8, 7, 8, 3, 9, 1, 2, 6, 6, 5, 5, 3, 4
Offset: 0

Views

Author

Robert G. Wilson v, Oct 12 2014

Keywords

Examples

			0.2341491301348092064851116728138729185463610347865138985224213867102381986628...
		

Crossrefs

Programs

  • Maple
    evalf(sum(1/(6^k-1), k=1..infinity),120); # Vaclav Kotesovec, Oct 18 2014
    # second program with faster converging series
    evalf( add( (1/6)^(n^2)*(1 + 2/(6^n - 1)), n = 1..11), 105); # Peter Bala, Jan 30 2022
  • Mathematica
    x = 1/6; RealDigits[ Sum[ DivisorSigma[0, k] x^k, {k, 1000}], 10, 105][[1]] (* after an observation and the formula of Amarnath Murthy, see A073668 *)
  • PARI
    suminf(k=1, 1/(6^k-1)) \\ Michel Marcus, Oct 18 2014

Formula

Equals Sum_{k>=1} d(k)/6^k, where d(k) is the number of divisors of k (A000005). - Amiram Eldar, Jun 22 2020

A248724 Decimal expansion of Sum_{k>=1} 1/(7^k - 1).

Original entry on oeis.org

1, 9, 0, 9, 1, 0, 0, 6, 2, 4, 1, 0, 2, 6, 1, 5, 7, 8, 2, 0, 2, 1, 9, 9, 6, 4, 4, 4, 1, 7, 6, 9, 1, 1, 6, 8, 7, 6, 9, 2, 6, 8, 4, 7, 6, 0, 0, 8, 2, 6, 6, 4, 0, 8, 3, 3, 4, 7, 7, 1, 1, 0, 8, 6, 4, 0, 9, 9, 9, 6, 7, 5, 5, 8, 4, 6, 3, 0, 1, 4, 4, 0, 3, 8, 0, 0, 9, 1, 1, 6, 1, 6, 5, 9, 7, 0, 9, 1, 1, 9, 3, 4, 5, 6, 1
Offset: 0

Views

Author

Robert G. Wilson v, Oct 12 2014

Keywords

Examples

			0.1909100624102615782021996444176911687692684760082664083347711086409996755846...
		

Crossrefs

Programs

  • Maple
    evalf(sum(1/(7^k-1), k=1..infinity),120) # Vaclav Kotesovec, Oct 18 2014
    # second program with faster converging series
    evalf( add( (1/7)^(n^2)*(1 + 2/(7^n - 1)), n = 1..11), 105); # Peter Bala, Jan 30 2022
  • Mathematica
    x = 1/7; RealDigits[ Sum[ DivisorSigma[0, k] x^k, {k, 1000}], 10, 105][[1]] (* after an observation and the formula of Amarnath Murthy, see A073668 *)
  • PARI
    suminf(k=1, 1/(7^k-1)) \\ Michel Marcus, Oct 18 2014

Formula

Equals Sum_{k>=1} d(k)/7^k, where d(k) is the number of divisors of k (A000005). - Amiram Eldar, Jun 22 2020

A248725 Decimal expansion of Sum_{k>=1} 1/(8^k - 1).

Original entry on oeis.org

1, 6, 0, 9, 6, 6, 1, 8, 4, 3, 1, 5, 0, 6, 2, 3, 9, 6, 8, 0, 5, 3, 0, 2, 5, 6, 4, 1, 4, 3, 6, 4, 2, 8, 8, 5, 5, 5, 0, 7, 4, 3, 8, 5, 6, 0, 2, 5, 3, 2, 8, 3, 4, 6, 3, 6, 0, 8, 3, 5, 9, 1, 8, 6, 4, 7, 8, 2, 3, 9, 4, 0, 8, 5, 8, 0, 0, 6, 3, 6, 9, 1, 7, 7, 9, 2, 3, 4, 5, 3, 1, 0, 0, 9, 3, 2, 5, 4, 0, 2, 5, 2, 9, 6, 4
Offset: 0

Views

Author

Robert G. Wilson v, Oct 12 2014

Keywords

Examples

			0.16096618431506239680530256414364288555074385602532834636083591864782394085800...
		

Crossrefs

Programs

  • Maple
    evalf(sum(1/(8^k-1), k=1..infinity),120) # Vaclav Kotesovec, Oct 18 2014
    # second program with faster converging series
    evalf( add( (1/8)^(n^2)*(1 + 2/(8^n - 1)), n = 1..10), 105); # Peter Bala, Jan 30 2022
  • Mathematica
    x = 1/8; RealDigits[ Sum[ DivisorSigma[0, k] x^k, {k, 1000}], 10, 105][[1]] (* after an observation and the formula of Amarnath Murthy, see A073668 *)
  • PARI
    suminf(k=1, 1/(8^k-1)) \\ Michel Marcus, Oct 18 2014

Formula

Equals Sum_{k>=1} d(k)/8^k, where d(k) is the number of divisors of k (A000005). - Amiram Eldar, Jun 22 2020

A248726 Decimal expansion of Sum_{k>=1} 1/(9^k - 1).

Original entry on oeis.org

1, 3, 9, 0, 4, 5, 1, 1, 7, 6, 6, 2, 1, 8, 8, 1, 2, 9, 3, 5, 8, 7, 2, 8, 4, 7, 4, 3, 6, 9, 0, 8, 9, 0, 5, 2, 1, 3, 9, 3, 6, 2, 6, 4, 7, 0, 6, 7, 8, 1, 9, 6, 0, 9, 5, 5, 1, 0, 3, 5, 4, 9, 3, 4, 7, 9, 6, 7, 0, 2, 0, 1, 4, 5, 3, 6, 6, 6, 6, 0, 7, 9, 8, 8, 6, 3, 3, 7, 9, 8, 1, 3, 5, 7, 6, 5, 5, 0, 5, 7, 9, 9, 5, 5, 3
Offset: 0

Views

Author

Robert G. Wilson v, Oct 12 2014

Keywords

Examples

			0.13904511766218812935872847436908905213936264706781960955103549347967020145366...
		

Crossrefs

Programs

  • Maple
    evalf(sum(1/(9^k-1), k=1..infinity),120) # Vaclav Kotesovec, Oct 18 2014
    # second program with faster converging series
    evalf( add( (1/9)^(n^2)*(1 + 2/(9^n - 1)), n = 1..10), 105); # Peter Bala, Jan 30 2022
  • Mathematica
    x = 1/9; RealDigits[ Sum[ DivisorSigma[0, k] x^k, {k, 1000}], 10, 105][[1]] (* after an observation and the formula of Amarnath Murthy, see A073668 *)
  • PARI
    suminf(k=1, 1/(9^k-1)) \\ Michel Marcus, Oct 18 2014

Formula

Equals Sum_{k>=1} d(k)/9^k, where d(k) is the number of divisors of k (A000005). - Amiram Eldar, Jun 22 2020

A088838 Numerator of the quotient sigma(3n)/sigma(n).

Original entry on oeis.org

4, 4, 13, 4, 4, 13, 4, 4, 40, 4, 4, 13, 4, 4, 13, 4, 4, 40, 4, 4, 13, 4, 4, 13, 4, 4, 121, 4, 4, 13, 4, 4, 13, 4, 4, 40, 4, 4, 13, 4, 4, 13, 4, 4, 40, 4, 4, 13, 4, 4, 13, 4, 4, 121, 4, 4, 13, 4, 4, 13, 4, 4, 40, 4, 4, 13, 4, 4, 13, 4, 4, 40, 4, 4, 13, 4, 4, 13, 4, 4, 364, 4, 4, 13, 4, 4, 13, 4, 4, 40
Offset: 1

Views

Author

Labos Elemer, Nov 04 2003

Keywords

Crossrefs

Programs

  • Maple
    A088838 := proc(n)
        numtheory[sigma](3*n)/numtheory[sigma](n) ;
        numer(%) ;
    end proc:
    seq(A088838(n),n=1..100) ; # R. J. Mathar, Nov 19 2017
    seq((3^(2+padic:-ordp(n,3))-1)/2, n=1..100); # Robert Israel, Nov 19 2017
  • Mathematica
    k=3; Table[Numerator[DivisorSigma[1, k*n]/DivisorSigma[1, n]], {n, 1, 128}]
  • PARI
    a(n) = numerator(sigma(3*n)/sigma(n)) \\ Felix Fröhlich, Nov 19 2017

Formula

From Robert Israel, Nov 19 2017: (Start)
a(n) = (3^(2+A007949(n))-1)/2.
G.f.: Sum_{k>=0} (3^(k+2)-1)*(x^(3^k)+x^(2*3^k))/(2*(1-x^(3^(k+1)))). (End)
a(n) = sigma(3*n)/(sigma(3*n) - 3*sigma(n)), where sigma(n) = A000203(n). - Peter Bala, Jun 10 2022
From Amiram Eldar, Jan 06 2023: (Start)
a(n) = numerator(A144613(n)/A000203(n)).
Sum_{k=1..n} a(k) ~ (3/log(3))*n*log(n) + (1/2 + 3*(gamma-1)/log(3))*n, where gamma is Euler's constant (A001620).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A080278(k) = 4*A214369 + 1 = 3.728614... . (End)
Showing 1-10 of 12 results. Next