A248739 a(n) = 29*n + ceiling(n/29).
0, 30, 59, 88, 117, 146, 175, 204, 233, 262, 291, 320, 349, 378, 407, 436, 465, 494, 523, 552, 581, 610, 639, 668, 697, 726, 755, 784, 813, 842, 872, 901, 930, 959, 988, 1017, 1046, 1075, 1104, 1133, 1162, 1191, 1220, 1249, 1278, 1307, 1336, 1365, 1394, 1423
Offset: 0
Examples
For n = 10, 29n + ceiling(n/29) = 290 + ceiling(0.3) = 290 + 1 = 291.
Links
- Karl V. Keller, Jr., Table of n, a(n) for n = 0..1000
- Ron Knott, Fibonacci numbers and the golden section
- Eric Weisstein's World of Mathematics, Golden Ratio
- Wikipedia, Golden ratio
- Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1).
Crossrefs
Programs
-
Magma
[29*n + Ceiling(n/29): n in [0..60]]; // Vincenzo Librandi, Oct 13 2014
-
Maple
A248739:=n->29*n+ceil(n/29): seq(A248739(n), n=0..50); # Wesley Ivan Hurt, Oct 14 2014
-
Mathematica
Table[29 n + Ceiling[n/29], {n, 0, 60}] (* Vincenzo Librandi, Oct 13 2014 *)
-
Python
from math import * for n in range(0,101): print(n, (29*n+ceil(n/29.0)))
Formula
a(n) = 29*n + ceiling(n/29).
a(n) = A004962(n) for n < 871. - Joerg Arndt, Oct 18 2014
Comments