A248744 Number of different ways one can attack all squares on an n X n chessboard with n rooks.
1, 1, 6, 48, 488, 6130, 92592, 1642046, 33514112, 774478098, 19996371200, 570583424422, 17831721894912, 605743986163706, 22223926472824832, 875786473087350750, 36893467224629215232, 1654480168085245432354, 78692809748219369422848, 3956839189675526769415958
Offset: 0
Keywords
References
- A. M. Yaglom and I. M. Yaglom, Challenging Mathematical Problems with Elementary Solutions, Vol. 1: Combinatorial Analysis and Probability Theory, Dover Publications, 1987, p. 77
Links
- Eric Weisstein's World of Mathematics, Minimal Dominating Set
- Eric Weisstein's World of Mathematics, Minimum Dominating Set
- Eric Weisstein's World of Mathematics, Rook Graph
Programs
-
Maple
A248744:=n->2*n^n-n!: seq(A248744(n), n=0..25); # Wesley Ivan Hurt, Nov 30 2017
-
Mathematica
Table[2 n^n - n!, {n, 20}]
Formula
a(n) = 2*n^n - n!.
Comments