cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Stephen Penrice

Stephen Penrice's wiki page.

Stephen Penrice has authored 2 sequences.

A248744 Number of different ways one can attack all squares on an n X n chessboard with n rooks.

Original entry on oeis.org

1, 1, 6, 48, 488, 6130, 92592, 1642046, 33514112, 774478098, 19996371200, 570583424422, 17831721894912, 605743986163706, 22223926472824832, 875786473087350750, 36893467224629215232, 1654480168085245432354, 78692809748219369422848, 3956839189675526769415958
Offset: 0

Author

Stephen Penrice, Apr 09 2017

Keywords

Comments

Number of minimum (and minimal) dominating sets in the n X n rook graph. - Eric W. Weisstein, Jun 20 2017 and Aug 02 2017

References

  • A. M. Yaglom and I. M. Yaglom, Challenging Mathematical Problems with Elementary Solutions, Vol. 1: Combinatorial Analysis and Probability Theory, Dover Publications, 1987, p. 77

Crossrefs

Main diagonal of A290632 and of A368831.

Programs

Formula

a(n) = 2*n^n - n!.

A000511 Number of n-step spiral self-avoiding walks on hexagonal lattice, where at each step one may continue in same direction or make turn of 2*Pi/3 counterclockwise.

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 11, 17, 25, 33, 47, 67, 87, 117, 160, 207, 270, 356, 455, 584, 751, 945, 1195, 1513, 1882, 2345, 2927, 3608, 4446, 5483, 6701, 8180, 9986, 12109, 14664, 17750, 21371, 25694, 30872, 36937, 44127, 52672, 62658, 74429, 88327, 104524, 123518, 145819, 171737, 201990, 237332, 278289, 325901, 381278, 445272, 519381, 605230, 704170, 818357, 950150, 1101634, 1275907, 1476384, 1706226, 1969869, 2272224, 2618007, 3013559, 3465917, 3982025, 4570898, 5242569, 6007170, 6877474, 7867709, 8992510, 10269905, 11719991, 13363733, 15226469, 17336450, 19723485, 22423058, 25474712, 28920541, 32810028, 37198284, 42144403, 47717124, 53992936, 61054313, 68996364, 77924848, 87954283, 99215750, 111854888
Offset: 0

Author

Stephen Penrice (penrice(AT)dimacs.rutgers.edu)

Keywords

Comments

The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.

Extensions

More terms from Sean A. Irvine, Nov 14 2010