A248796 Numbers k such that Product_{d|(k-2)} phi(d) = Product_{d|(k-1)} phi(d) where phi(x) = Euler totient function (A000010).
3, 5, 7, 17, 257, 65537, 2200696, 2619707, 6372796, 40588487, 76466987, 81591196, 118018096, 206569607, 470542487, 525644387, 726638836, 791937616, 971122516, 991172807, 1268457016, 1384822007, 1613055047, 1709460755, 1861556656, 1872619667, 2507927416, 2659263947
Offset: 1
Keywords
Examples
17 is in the sequence because A029940(15) = A029940(16) = 64.
Programs
-
Magma
[n: n in [3..100000] | (&*[EulerPhi(d): d in Divisors(n-2)]) eq (&*[EulerPhi(d): d in Divisors(n-1)])];
Extensions
a(7)-a(9) using A248795 by Jaroslav Krizek, Nov 19 2014
a(10)-a(20) using A248795 by Jaroslav Krizek, Nov 25 2014
More terms from Jinyuan Wang, Jul 27 2025
Comments