A248899 Numbers that are palindromic in bases 10 and 19.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 666, 838, 1771, 432234, 864468, 1551551, 1897981, 2211122, 155292551, 330050033, 453848354, 467535764, 650767056, 666909666, 857383758, 863828368, 47069796074, 62558085526, 67269596276, 87161116178, 96060106069, 121791197121, 127673376721, 139103301931, 234595595432, 246025520642
Offset: 1
Examples
838 = 262 in base 19.
Crossrefs
Programs
-
Magma
[n: n in [0..2*10^7] | Intseq(n) eq Reverse(Intseq(n))and Intseq(n, 19) eq Reverse(Intseq(n, 19))]; // Vincenzo Librandi, Mar 08 2015
-
Maple
IsPalindromic := proc(n, Base) local Conv, i; Conv := convert(n, base, Base); for i from 1 to nops(Conv) / 2 do: if Conv [i] <> Conv [nops(Conv) + 1 - i] then return false: fi: od: return true; end proc; Base := 19; A := []; for i from 1 to 10^6 do: S := convert(i, base, 10); V := 0; if i mod 10 = 0 then next; fi; for j from 1 to nops(S) do: V := V * 10 + S [j]; od: for j from 0 to 10 do: V1 := V * 10^(nops(S) + j) + i; if IsPalindromic(V1, Base) then A := [op(A), V1]; fi; od: V1 := (V - (V mod 10)) * 10^(nops(S) - 1) + i; if IsPalindromic(V1, Base) then A := [op(A), V1]; fi; od: sort(A);
-
Mathematica
palQ[n_, b_] := Block[{d = IntegerDigits[n, b]}, If[d == Reverse@ d, True, False]]; Select[Range[0, 10^6], And[palQ[#, 10], palQ[#, 19]] &] (* Michael De Vlieger, Mar 07 2015 *) b1=10; b2=19; lst={}; Do[d1=IntegerDigits[n, b1]; d2=IntegerDigits[n, b2]; If[d1==Reverse[d1]&&d2==Reverse[d2], AppendTo[lst, n]], {n, 0, 10^7}]; lst (* Vincenzo Librandi, Mar 08 2015 *)
-
PARI
isok(n) = (n==0) || ((d = digits(n, 10)) && (Vecrev(d) == d) && (d = digits(n, 19)) && (Vecrev(d) == d)); \\ Michel Marcus, Mar 07 2015
Comments