A248905 Array read by antidiagonals: the number of automata over an n-letter alphabet whose states are determined by the last k symbols read.
1, 1, 2, 1, 5, 5, 1, 30, 192, 15, 1, 1247
Offset: 1
Examples
Below is the table T(n,k) for row n = alphabet size, and column k = synchronizing word length. Top left entry is T(1,1). 1 1 1 1 1 1 ... 2 5 30 1247 ? 5 192 ? ? 15 98721 ? 203 ? . . .
Links
- Collin Bleak, Table of a(n,k) listed as antidiagonal ordered sequence in index m = 1..15.
- Collin Bleak, Peter J. Cameron, and Feyishayo Olukoya, Automorphisms of shift spaces and the Higman-Thomspon groups: the one-sided case, arXiv:2004.08478 [math.GR], 2020.
- Avraham N. Trahtman, The Road Coloring Problem, arXiv:0709.0099 [cs.DM], 2007.
- Avraham N. Trahtman, The Road Coloring Problem, Israel Journal of Mathematics, 172 (2009), 51-60.
Crossrefs
Cf. A000110 (first column).
Formula
T(n,1) = A000110(n).
Comments