cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248917 a(n) = 2^n * n^2 + 1.

Original entry on oeis.org

1, 3, 17, 73, 257, 801, 2305, 6273, 16385, 41473, 102401, 247809, 589825, 1384449, 3211265, 7372801, 16777217, 37879809, 84934657, 189267969, 419430401, 924844033, 2030043137, 4437573633, 9663676417, 20971520001, 45365592065, 97844723713, 210453397505, 451508436993
Offset: 0

Views

Author

Paul Curtz, Oct 22 2014

Keywords

Comments

Binomial transform of A118239 (Engel expansion of cosh(1)).
Table of successive differences of a(n):
1, 3, 17, 73, 257, 801, 2305,...
2, 14, 56, 184, 544, 1504,...
12, 42, 128, 360, 960,...
30, 86, 232, 600,...
56, 146, 368,...
90, 222,...
132,...
etc.
Via b(n) = 0, 0, 0 followed by A055580(n), i.e., 0, 0, 0, 1, 7, 31, 111, ... (the main sequence for the recurrence), a link can be found between a(n) and A002064(n): c(n) = b(n+1) - 2*b(n) = 0, 0, 1, 5, 17, 49, 129, ... (the main sequence for the signature (5, -8, 4)).

Examples

			a(3) = 9 * 8 + 1 = 73.
a(4) = 16 * 16 + 1 = 257.
a(5) = 25 * 32 + 1 = 801.
		

Crossrefs

Cf. A000225, A002064 (Cullen numbers), A006784, A007758, A055580, A118239, A168298.

Programs

  • Magma
    [2^n*n^2+1: n in [0..30]]; // Vincenzo Librandi, Oct 29 2016
  • Mathematica
    Table[n^2 * 2^n + 1, {n, 0, 31}] (* Alonso del Arte, Oct 22 2014 *)
    LinearRecurrence[{7,-18,20,-8}, {1,3,17,73}, 25] (* G. C. Greubel, Oct 28 2016 *)
  • PARI
    Vec(-(12*x^3-14*x^2+4*x-1)/((x-1)*(2*x-1)^3) + O(x^100)) \\ Colin Barker, Oct 22 2014
    
  • PARI
    a(n)=n^2<Charles R Greathouse IV, Oct 22 2014
    

Formula

a(n) = 4*a(n-1) - 4*a(n-2) + 2^(n+1) + 1.
a(n) = A007758(n) + 1.
a(n) = 7*a(n-1) - 18*a(n-2) + 20*a(n-3) - 8*a(n-4). - Jean-François Alcover, Oct 22 2014
G.f.: -(12*x^3-14*x^2+4*x-1) / ((x-1)*(2*x-1)^3). - Colin Barker, Oct 22 2014
E.g.f.: exp(x) + 2*x*(1 + 2*x)*exp(2*x). - G. C. Greubel, Oct 28 2016