A248917 a(n) = 2^n * n^2 + 1.
1, 3, 17, 73, 257, 801, 2305, 6273, 16385, 41473, 102401, 247809, 589825, 1384449, 3211265, 7372801, 16777217, 37879809, 84934657, 189267969, 419430401, 924844033, 2030043137, 4437573633, 9663676417, 20971520001, 45365592065, 97844723713, 210453397505, 451508436993
Offset: 0
Examples
a(3) = 9 * 8 + 1 = 73. a(4) = 16 * 16 + 1 = 257. a(5) = 25 * 32 + 1 = 801.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (7,-18,20,-8).
Programs
-
Magma
[2^n*n^2+1: n in [0..30]]; // Vincenzo Librandi, Oct 29 2016
-
Mathematica
Table[n^2 * 2^n + 1, {n, 0, 31}] (* Alonso del Arte, Oct 22 2014 *) LinearRecurrence[{7,-18,20,-8}, {1,3,17,73}, 25] (* G. C. Greubel, Oct 28 2016 *)
-
PARI
Vec(-(12*x^3-14*x^2+4*x-1)/((x-1)*(2*x-1)^3) + O(x^100)) \\ Colin Barker, Oct 22 2014
-
PARI
a(n)=n^2<
Charles R Greathouse IV, Oct 22 2014
Formula
a(n) = 4*a(n-1) - 4*a(n-2) + 2^(n+1) + 1.
a(n) = A007758(n) + 1.
a(n) = 7*a(n-1) - 18*a(n-2) + 20*a(n-3) - 8*a(n-4). - Jean-François Alcover, Oct 22 2014
G.f.: -(12*x^3-14*x^2+4*x-1) / ((x-1)*(2*x-1)^3). - Colin Barker, Oct 22 2014
E.g.f.: exp(x) + 2*x*(1 + 2*x)*exp(2*x). - G. C. Greubel, Oct 28 2016
Comments