cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A248945 Decimal expansion of Sum_{n >= 1} (sin(1/n))^2.

Original entry on oeis.org

1, 3, 2, 6, 3, 2, 4, 4, 0, 5, 2, 6, 6, 6, 5, 3, 4, 3, 3, 5, 4, 9, 4, 0, 3, 7, 7, 8, 1, 4, 2, 6, 8, 8, 9, 9, 6, 8, 3, 1, 1, 3, 3, 7, 1, 0, 8, 2, 5, 7, 1, 8, 8, 9, 5, 5, 5, 5, 6, 6, 4, 1, 4, 2, 4, 4, 0, 3, 9, 8, 9, 8, 3, 4, 3, 1, 7, 0, 8, 2, 5, 3, 4, 9, 1, 5, 4, 8, 3, 8, 3, 1, 0, 6, 8, 4, 4, 8, 5, 9, 6, 3, 8, 3, 5
Offset: 1

Views

Author

Clark Kimberling, Oct 18 2014

Keywords

Examples

			1.32632440526665343354940377814268899683113371082571889555566414244...
		

Crossrefs

Programs

  • Maple
    evalf(sum((sin(1/n))^2, n=1..infinity), 120); # Vaclav Kotesovec, Oct 20 2014
  • Mathematica
    (* N[Sum[Sin[1/n]^2, {n, 1, Infinity}], 120], yields only 26 correct decimals, N[Sum[Sin[1/n]^2, {n, 1, 10000}], 120], yields only 7 correct decimals! *)
  • PARI
    default(realprecision,150); sumpos(n=1,(sin(1/n))^2) \\ Vaclav Kotesovec, Oct 20 2014

A248947 Decimal expansion of Sum_{n >= 1} tan(1/n)^2.

Original entry on oeis.org

3, 1, 3, 2, 7, 9, 9, 3, 6, 2, 8, 1, 8, 0, 0, 5, 2, 2, 6, 7, 2, 0, 0, 3, 4, 0, 1, 2, 8, 5, 8, 5, 6, 7, 6, 3, 8, 0, 5, 2, 2, 8, 0, 5, 2, 2, 4, 1, 8, 8, 7, 2, 4, 0, 1, 1, 2, 7, 1, 9, 2, 0, 0, 4, 1, 8, 0, 5, 4, 4, 3, 7, 2, 3, 1, 9, 8, 2, 3, 3, 8, 7, 1, 5, 9, 3, 5, 4, 5, 4, 9, 3, 6, 5, 3, 7, 9, 6, 2, 9, 4, 8, 9, 5, 7
Offset: 1

Views

Author

Clark Kimberling, Oct 18 2014

Keywords

Examples

			3.132799362818005226720034012858567638052280522418872401127192004180544...
		

Crossrefs

Programs

  • Maple
    evalf(sum((tan(1/n))^2, n=1..infinity), 120); # Vaclav Kotesovec, Oct 20 2014
  • Mathematica
    (* N[Sum[Tan[1/n]^2, {n, 1, Infinity}], 120], yields only 25 correct decimals *)
  • PARI
    default(realprecision,120); sumpos(n=1,(tan(1/n))^2) \\ Vaclav Kotesovec, Oct 20 2014

A248948 Decimal expansion of Sum_{n >= 1} tan(1/n^2).

Original entry on oeis.org

2, 2, 0, 8, 2, 5, 8, 8, 1, 3, 2, 8, 7, 1, 7, 5, 7, 0, 9, 0, 8, 4, 3, 4, 9, 6, 8, 0, 7, 3, 0, 3, 4, 7, 3, 2, 6, 2, 4, 5, 8, 6, 8, 0, 7, 4, 1, 9, 8, 7, 7, 0, 6, 7, 6, 7, 2, 7, 6, 5, 9, 9, 1, 5, 3, 9, 8, 2, 6, 6, 2, 1, 6, 3, 1, 8, 6, 9, 1, 9, 6, 5, 4, 2, 2, 4, 4, 0, 5, 0, 3, 4, 0, 3, 0, 2, 4, 2, 1, 1, 3, 4, 8, 1, 1
Offset: 1

Views

Author

Clark Kimberling, Oct 18 2014

Keywords

Examples

			2.208258813287175709084349680730347326245868074198770676727659915398266...
		

Crossrefs

Programs

  • Maple
    evalf(sum(tan(1/n^2), n=1..infinity), 120); # Vaclav Kotesovec, Oct 20 2014
  • Mathematica
    (* N[Sum[Tan[1/n^2], {n, 1, Infinity}], 120], yields only 25 correct decimals *)
  • PARI
    default(realprecision,120); sumpos(n=1,tan(1/n^2)) \\ Vaclav Kotesovec, Oct 20 2014

A248949 Decimal expansion of sum_{n >= 1} (sin(2/n))^2.

Original entry on oeis.org

3, 0, 1, 3, 6, 5, 8, 0, 2, 5, 8, 1, 0, 0, 5, 9, 1, 7, 6, 2, 1, 0, 1, 9, 5, 5, 8, 1, 9, 5, 4, 8, 2, 7, 0, 2, 2, 4, 0, 7, 5, 4, 4, 2, 5, 6, 7, 1, 3, 4, 9, 0, 3, 9, 9, 8, 8, 8, 3, 6, 7, 2, 9, 6, 4, 2, 8, 1, 4, 4, 9, 2, 8, 3, 5, 0, 0, 1, 1, 3, 3, 5, 2, 0, 9, 1, 8, 0, 5, 4, 1, 0, 4, 7, 4, 2, 1, 8, 8, 9, 7, 7, 5, 2, 3
Offset: 1

Views

Author

Clark Kimberling, Oct 18 2014

Keywords

Examples

			3.0136580258100591762101955819548270224075442567134903998883672964281449...
		

Crossrefs

Programs

  • Maple
    evalf(sum((sin(2/n))^2, n=1..infinity), 120); # Vaclav Kotesovec, Oct 20 2014
  • Mathematica
    (* N[Sum[Sin[2/n]^2, {n, 1, Infinity}], 120], yields only 25 correct decimals *)
  • PARI
    default(realprecision,120); sumpos(n=1,(sin(2/n))^2) \\ Vaclav Kotesovec, Oct 20 2014

A342680 Decimal expansion of Sum_{n>=1} sin(sin(n)/n).

Original entry on oeis.org

9, 6, 1, 3, 9, 4, 3, 1, 5, 9, 4, 5, 7, 3, 6, 5, 4, 7, 2, 4, 7, 6, 4, 5, 9, 5, 3, 1, 6, 1, 5, 4, 7, 3, 0, 6, 8, 6, 8, 5, 8, 2, 6, 9, 3, 0, 1, 0, 5, 8, 4, 6, 0, 4, 5, 5, 1, 1, 5, 1, 4, 9, 1, 8, 1, 8, 6, 3, 3, 7, 8, 0, 2, 9, 1, 4, 6, 9, 9, 7, 0, 6, 6, 7, 5, 4, 2, 4, 3, 2, 5, 5, 4, 9, 5, 5, 5, 5, 2, 6, 9, 8, 7, 9, 2
Offset: 0

Views

Author

Bernard Schott, Mar 18 2021

Keywords

Comments

Abel summation shows the series is convergent.

Examples

			0.96139431594573654724764595316154730686858269301058...
		

References

  • Konrad Knopp, Theory and Application of Infinite Series, Blackie, 1928, p. 313.
  • Jean-Marie Monier, Analyse, Tome 3, 2ème année, MP.PSI.PC.PT, Dunod, 1997, Exercice C.3.7 2.3.b)4. p. 309.

Crossrefs

Programs

  • Magma
    nDgtsOutput:=110; nDgtsPrecision:=nDgtsOutput+10; SetDefaultRealField(RealField(nDgtsPrecision)); kMax:=Ceiling(1.395*nDgtsPrecision-3); mMax:=Ceiling(1.5*kMax); sum:=0.0; S1:=[0.0 : j in [1..kMax]]; n:=0; for m in [1..mMax] do S2:=S1; for k in [1..355] do n:=n+1; sum+:=Sin(Sin(n)/n); end for; S1[1]:=sum; for j in [1..kMax-1] do S1[j+1]:=(S2[j]+S1[j])/2; end for; end for; ChangePrecision(S1[#S1], nDgtsOutput); // The constants 1.395 and 1.5 were empirically derived; 355 is used because 355/Pi is very close to an odd integer. - Jon E. Schoenfield, Mar 21 2021

Extensions

a(3)-a(104) from Jon E. Schoenfield, Mar 20 2021

A248950 Decimal expansion of sum_{n >= 1} sin(2/n^2).

Original entry on oeis.org

2, 1, 7, 6, 3, 0, 5, 1, 4, 7, 7, 7, 5, 8, 3, 2, 4, 0, 2, 1, 8, 6, 2, 2, 9, 5, 6, 9, 8, 6, 3, 9, 3, 6, 4, 7, 9, 3, 4, 9, 4, 3, 9, 2, 0, 3, 1, 9, 1, 6, 9, 8, 1, 5, 4, 4, 9, 5, 1, 6, 5, 1, 5, 5, 0, 6, 2, 8, 6, 6, 7, 1, 8, 6, 7, 1, 5, 4, 4, 8, 2, 5, 4, 6, 2, 1, 4, 6, 0, 3, 5, 0, 0, 2, 8, 8, 7, 6, 1, 9, 4, 2, 9, 3, 5
Offset: 1

Views

Author

Clark Kimberling, Oct 18 2014

Keywords

Examples

			2.1763051477758324021862295698639364793494392031916981544951651550628667...
		

Crossrefs

Programs

  • Maple
    evalf(sum(sin(2/n^2), n=1..infinity), 120); # Vaclav Kotesovec, Oct 20 2014
  • Mathematica
    (* N[Sum[Sin[2/n^2], {n, 1, Infinity}], 120], yields only 26 correct decimals *)
  • PARI
    default(realprecision,120); sumpos(n=1,sin(2/n^2)) \\ Vaclav Kotesovec, Oct 20 2014

A248951 Decimal expansion of sum_{n >= 1} (tan(2/n))^2.

Original entry on oeis.org

9, 0, 4, 3, 5, 2, 8, 6, 0, 8, 6, 5, 8, 2, 1, 1, 1, 5, 2, 6, 5, 6, 3, 8, 2, 7, 4, 7, 2, 9, 5, 8, 9, 9, 5, 7, 9, 1, 5, 1, 3, 3, 3, 5, 7, 1, 9, 8, 7, 1, 5, 0, 4, 1, 3, 9, 2, 4, 2, 5, 1, 2, 7, 8, 0, 7, 1, 9, 3, 6, 3, 4, 5, 9, 9, 6, 4, 4, 8, 8, 9, 4, 6, 7, 5, 4, 6, 4, 2, 4, 8, 4, 7, 2, 8, 5, 9, 7, 0, 9, 8, 5, 2, 2, 4
Offset: 1

Views

Author

Clark Kimberling, Oct 18 2014

Keywords

Examples

			9.0435286086582111526563827472958995791513335719871504139242512780719363...
		

Crossrefs

Programs

  • Maple
    evalf(sum((tan(2/n))^2, n=1..infinity), 120); # Vaclav Kotesovec, Oct 20 2014
  • Mathematica
    (* N[Sum[Tan[2/n]^2, {n, 1, Infinity}], 120], yields only 24 correct decimals *)
  • PARI
    default(realprecision,120); sumpos(n=1,(tan(2/n))^2) \\ Vaclav Kotesovec, Oct 20 2014

A362662 Decimal expansion of Sum_{n>=1} (tan(1/n) - sin(1/n)).

Original entry on oeis.org

8, 2, 2, 0, 8, 2, 2, 0, 0, 8, 0, 3, 5, 8, 8, 2, 0, 2, 9, 3, 5, 8, 7, 0, 1, 1, 8, 7, 1, 5, 9, 9, 3, 5, 2, 0, 7, 3, 0, 4, 4, 6, 0, 4, 3, 8, 1, 1, 6, 5, 3, 2, 6, 3, 9, 0, 8, 3, 6, 8, 5, 9, 3, 9, 3, 4, 3, 7, 1, 0, 5, 3, 4, 5, 3, 5, 4, 3, 6, 8, 1, 3, 2, 4, 6, 0, 0, 4, 7, 1, 3, 4, 7, 4, 3, 2, 2
Offset: 0

Views

Author

Bernard Schott, Apr 29 2023

Keywords

Comments

Series Sum_{n>=1} sin(1/n) and Sum_{n>=1} tan(1/n) -> oo but with u(n) = (tan(1/n) - sin(1/n)), as u(n) ~ 1 / (2*n^3) when n -> oo, the series Sum_{n>=1} u(n) is convergent.

Examples

			Equals 0.822082200803588202935870118715993520730...
		

References

  • J. Guégand and M.-A. Maingueneau, Exercices d'Analyse, Exercice 1 - 41.2, p. 47, Classes Préparatoires aux Grandes Ecoles, Ellipses, 1988.

Crossrefs

Programs

  • Maple
    evalf(sum(tan(1/n) - sin(1/n), n=1..infinity), 120);
  • PARI
    sumpos(n=1, tan(1/n) - sin(1/n)) \\ Michel Marcus, Apr 29 2023

A362752 Decimal expansion of Sum_{k>=1} (1/k - sin(1/k)).

Original entry on oeis.org

1, 9, 1, 8, 9, 9, 0, 8, 5, 5, 0, 6, 2, 6, 4, 8, 2, 7, 9, 8, 1, 1, 4, 6, 0, 7, 7, 2, 2, 6, 4, 3, 9, 8, 4, 3, 4, 0, 4, 3, 0, 9, 1, 0, 2, 3, 7, 7, 5, 5, 0, 9, 5, 3, 9, 1, 1, 7, 2, 1, 2, 9, 8, 0, 9, 0, 7, 7, 4, 8, 0, 1, 2, 3, 5, 1, 3, 4, 0, 8, 1, 2, 1, 7, 0, 4, 9, 4, 4, 0, 2, 5, 4, 2, 8, 1, 6, 2, 6, 8, 1, 1, 7, 8, 5
Offset: 0

Views

Author

Amiram Eldar, May 02 2023

Keywords

Examples

			0.19189908550626482798114607722643984340430910237755...
		

Crossrefs

Programs

  • Maple
    evalf(sum(1/k - sin(1/k), k = 1..infinity), 120);
  • PARI
    sumalt(k = 1, (-1)^(k+1) * zeta(2*k+1)/(2*k+1)!)

Formula

Equals Sum_{k>=1} (-1)^(k+1)*zeta(2*k+1)/(2*k+1)!.

A362753 Decimal expansion of Sum_{k>=1} sin(1/k)/k.

Original entry on oeis.org

1, 4, 7, 2, 8, 2, 8, 2, 3, 1, 9, 5, 6, 1, 8, 5, 2, 9, 6, 2, 9, 4, 9, 4, 7, 3, 8, 3, 8, 2, 3, 1, 4, 5, 8, 2, 5, 3, 2, 3, 8, 6, 5, 9, 2, 7, 8, 7, 9, 3, 0, 7, 1, 7, 2, 8, 1, 9, 2, 2, 9, 3, 7, 5, 7, 2, 2, 4, 3, 3, 9, 0, 6, 1, 0, 1, 1, 5, 7, 2, 2, 0, 8, 1, 5, 1, 3, 5, 5, 0, 7, 0, 4, 1, 5, 0, 6, 8, 9, 1, 3, 3, 2, 7, 5
Offset: 1

Views

Author

Amiram Eldar, May 02 2023

Keywords

Comments

The value of the Hardy-Littlewood function H(x) = Sum_{k>=1} sin(x/k)/k at x = 1 (Hardy and Littlewood, 1936; Gautschi, 2004).

Examples

			1.47282823195618529629494738382314582532386592787930...
		

References

  • Walter Gautschi, Orthogonal Polynomials: Computation and Approximation, Oxford University Press, 2004. See Example 3.64, pp. 242-245.

Crossrefs

Programs

  • Maple
    evalf(sum(sin(1/k)/k, k = 1 .. infinity), 120);
  • PARI
    sumpos(k = 1, sin(1/k)/k)

Formula

Equals Sum_{k>=1} (-1)^(k+1)*zeta(2*k)/(2*k-1)!.
Showing 1-10 of 11 results. Next