cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248960 Number of ternary words of length n in which all digits 0..2 occur in every 5 consecutive digits.

Original entry on oeis.org

1, 3, 9, 27, 81, 150, 366, 870, 2022, 4686, 10974, 25614, 59742, 139398, 325350, 759198, 1771590, 4134126, 9647262, 22512342, 52533750, 122590422, 286071414, 667563054, 1557794622, 3635198310, 8482932318, 19795382454, 46193598486, 107795266974, 251546100558, 586996465758, 1369788083022
Offset: 0

Views

Author

Andrew Woods, Jan 12 2015

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1,3,9,27,81},LinearRecurrence[{1,2,2,2,-1,-1},{150,366,870,2022,4686,10974},30]] (* Harvey P. Dale, Apr 04 2015 *)
  • PARI
    Vec((1+2*x+4*x^2+10*x^3+28*x^4-8*x^5-14*x^6-6*x^8+3*x^10)/((1+x)*(1-2*x-2*x^3+x^5)) + O(x^30)) \\ Colin Barker, Oct 27 2016

Formula

G.f.: (1+2*x+4*x^2+10*x^3+28*x^4-8*x^5-14*x^6-6*x^8+3*x^10) / ((1+x)*(1-2*x-2*x^3+x^5)). - Colin Barker, Oct 27 2016
a(n) = a(n-1) + 2*a(n-2) + 2*a(n-3) + 2*a(n-4) - a(n-5) - a(n-6).
a(n) = A242317(n-4) * 6.

Extensions

Changed offset to 0. - N. J. A. Sloane, Jan 15 2015