cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A249057 Triangular array: Row n shows the coefficients of polynomials p(n,x) defined in Comments.

Original entry on oeis.org

1, 4, 1, 5, 4, 1, 24, 11, 4, 1, 35, 52, 18, 4, 1, 192, 123, 84, 26, 4, 1, 315, 660, 285, 120, 35, 4, 1, 1920, 1545, 1500, 545, 160, 45, 4, 1, 3465, 9180, 4680, 2820, 930, 204, 56, 4, 1, 23040, 22005, 27180, 11220, 4740, 1470, 252, 68, 4, 1, 45045, 142380
Offset: 0

Views

Author

Clark Kimberling, Oct 20 2014

Keywords

Comments

The polynomial p(n,x) is the numerator of the rational function given by f(n,x) = x + (n + 1)/f(n-1,x), where f(0,x) = 1.
Row sums give A249059(n) for n >= 1.
First column is A249060 (n-th term = n!! for n >= 0).

Examples

			f(0,x) = 1/1, so that p(0,x) = 1
f(1,x) = (4 + x)/1, so that p(1,x) = 4 + x;
f(2,x) = (5 + 4 x + x^2)/(1 + x), so that p(2,x) = 5 + 4 x + x^2.
First 6 rows of the triangle of coefficients:
1
4    1
5    4     1
24   11    4    1
35   52    18   4    1
192  123   84   26   4   1
		

Crossrefs

Programs

  • Mathematica
    z = 12; f[x_, n_] := x + (n+3)/f[x, n - 1];
    f[x_, 0] = 1; t = Table[Factor[f[x, n]], {n, 0, z}];
    u = Numerator[t]; TableForm[Rest[Table[CoefficientList[u[[n]], x], {n, 0, z}]]];
    Flatten[CoefficientList[u, x]] (* A249057 sequence *)
  • PARI
    f(n) = if (n, x + (n + 3)/f(n-1), 1);
    row(n) = Vecrev(numerator(f(n)), 0); \\ Michel Marcus, Nov 25 2022

A249059 Row sums of the triangular array at A249057.

Original entry on oeis.org

1, 5, 10, 40, 110, 430, 1420, 5720, 21340, 89980, 367400, 1627120, 7138120, 33172040, 154520080, 751616800, 3687498320, 18719834320, 96157299040, 507993654080, 2719611532000, 14911459229920, 82901747529920, 470599687507840, 2708946870815680
Offset: 0

Views

Author

Clark Kimberling, Oct 20 2014

Keywords

Examples

			First 3 rows from A249057:
1
4    1
5    4    1,
so that a(0) = 1, a(1) = 5, a(2) = 10.
		

Crossrefs

Programs

  • Mathematica
    z = 30; p[x_, n_] := x + (n + 2)/p[x, n - 1]; p[x_, 1] = 1;
    t = Table[Factor[p[x, n]], {n, 1, z}];
    u = Numerator[t];
    v1 = Flatten[CoefficientList[u, x]]; (* A249057  *)
    v2 = u /. x -> 1  (* A249059 *)
    v3 = u /. x -> 0  (* A249060 *)
Showing 1-2 of 2 results.