A249059
Row sums of the triangular array at A249057.
Original entry on oeis.org
1, 5, 10, 40, 110, 430, 1420, 5720, 21340, 89980, 367400, 1627120, 7138120, 33172040, 154520080, 751616800, 3687498320, 18719834320, 96157299040, 507993654080, 2719611532000, 14911459229920, 82901747529920, 470599687507840, 2708946870815680
Offset: 0
First 3 rows from A249057:
1
4 1
5 4 1,
so that a(0) = 1, a(1) = 5, a(2) = 10.
-
z = 30; p[x_, n_] := x + (n + 2)/p[x, n - 1]; p[x_, 1] = 1;
t = Table[Factor[p[x, n]], {n, 1, z}];
u = Numerator[t];
v1 = Flatten[CoefficientList[u, x]]; (* A249057 *)
v2 = u /. x -> 1 (* A249059 *)
v3 = u /. x -> 0 (* A249060 *)
A249060
Column 1 of the triangular array at A249057.
Original entry on oeis.org
1, 4, 5, 24, 35, 192, 315, 1920, 3465, 23040, 45045, 322560, 675675, 5160960, 11486475, 92897280, 218243025, 1857945600, 4583103525, 40874803200, 105411381075, 980995276800, 2635284526875, 25505877196800, 71152682225625, 714164561510400, 2063427784543125
Offset: 0
First 3 rows from A249057:
1
4 1
5 4 1,
so that a(0) = 1, a(1) = 4, a(2) = 5.
-
z = 30; p[x_, n_] := x + (n + 2)/p[x, n - 1]; p[x_, 1] = 1;
t = Table[Factor[p[x, n]], {n, 1, z}];
u = Numerator[t]; v1 = Flatten[CoefficientList[u, x]]; (* A249057 *)
v2 = u /. x -> 1 (* A249059 *)
v3 = u /. x -> 0 (* A249060 *)
-
f(n) = if (n, x + (n + 3)/f(n-1), 1);
a(n) = polcoef(numerator(f(n)), 0); \\ Michel Marcus, Nov 25 2022
A230698
Triangle read by rows: T(n,k) = T(n-1,k-1) + n*T(n-2,k); T(0,0) = T(1,0) = T(1,1) = 1, T(n,k) = 0 if k>n or if k<0.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 8, 7, 9, 1, 1, 15, 33, 12, 14, 1, 1, 48, 57, 87, 18, 20, 1, 1, 105, 279, 141, 185, 25, 27, 1, 1, 384, 561, 975, 285, 345, 33, 35, 1, 1, 945, 2895, 1830, 2640, 510, 588, 42, 44, 1, 1, 3840, 6555, 12645, 4680, 6090, 840, 938, 52, 54, 1, 1
Offset: 0
Triangle begins (0<=k<=n):
1
1, 1
2, 1, 1
3, 5, 1, 1
8, 7, 9, 1, 1
15, 33, 12, 14, 1, 1
48, 57, 87, 18, 20, 1, 1
105, 279, 141, 185, 25, 27, 1, 1
384, 561, 975, 285, 345, 33, 35, 1, 1
945, 2895, 1830, 2640, 510, 588, 42, 44, 1, 1
3840, 6555, 12645, 4680, 6090, 840, 938, 52, 54, 1, 1
10395, 35685, 26685, 41685, 10290, 12558, 1302, 1422, 63, 65, 1, 1
-
t[0, 0] = 1; t[1, 0] = 1; t[1, 1] = 1; t[n_, k_] := t[n, k] = If[k > n || k < 0, 0, t[n - 1, k - 1] + n*t[n - 2, k]]; Table[t[n, k], {n, 0, 10}, {k, 0, n}](* Clark Kimberling, Oct 19 2014 *)
(* Next, the polynomials *); z = 20; f[x_, n_] := x + n/f[x, n - 1]; f[x_, 0] = 1; t = Table[Factor[f[x, n]], {n, 0, z}]; u = Numerator[t]; TableForm[Rest[Table[CoefficientList[u[[n]], x], {n, 0, z}]]] (* A249057 array *)
Flatten[CoefficientList[u, x]] (* A249057 sequence *)
(* Clark Kimberling, Oct 19 2014 *)
A249074
Triangular array read by rows: row n gives the coefficients of the polynomial p(n,x) defined in Comments.
Original entry on oeis.org
1, 4, 1, 6, 4, 1, 32, 14, 4, 1, 60, 72, 24, 4, 1, 384, 228, 120, 36, 4, 1, 840, 1392, 564, 176, 50, 4, 1, 6144, 4488, 3312, 1140, 240, 66, 4, 1, 15120, 31200, 14640, 6480, 2040, 312, 84, 4, 1, 122880, 104880, 97440, 37440, 11280, 3360, 392, 104, 4, 1, 332640
Offset: 0
f(0,x) = 1/1, so that p(0,x) = 1;
f(1,x) = (4 + x)/1, so that p(1,x) = 4 + x;
f(2,x) = (6 + 4*x + x^2)/(4 + x), so that p(2,x) = 6 + 4*x + x^2.
First 6 rows of the triangle of coefficients:
1
4 1
6 4 1
32 14 4 1
60 72 24 4 1
384 228 120 36 4 1
-
z = 11; p[x_, n_] := x + 2 n/p[x, n - 1]; p[x_, 1] = 1;
t = Table[Factor[p[x, n]], {n, 1, z}]
u = Numerator[t]
TableForm[Table[CoefficientList[u[[n]], x], {n, 1, z}]] (* A249074 array *)
Flatten[CoefficientList[u, x]] (* A249074 sequence *)
v = u /. x -> 1 (* A249075 *)
u /. x -> 0 (* A087299 *)
Showing 1-4 of 4 results.
Comments