A249057 Triangular array: Row n shows the coefficients of polynomials p(n,x) defined in Comments.
1, 4, 1, 5, 4, 1, 24, 11, 4, 1, 35, 52, 18, 4, 1, 192, 123, 84, 26, 4, 1, 315, 660, 285, 120, 35, 4, 1, 1920, 1545, 1500, 545, 160, 45, 4, 1, 3465, 9180, 4680, 2820, 930, 204, 56, 4, 1, 23040, 22005, 27180, 11220, 4740, 1470, 252, 68, 4, 1, 45045, 142380
Offset: 0
Examples
f(0,x) = 1/1, so that p(0,x) = 1 f(1,x) = (4 + x)/1, so that p(1,x) = 4 + x; f(2,x) = (5 + 4 x + x^2)/(1 + x), so that p(2,x) = 5 + 4 x + x^2. First 6 rows of the triangle of coefficients: 1 4 1 5 4 1 24 11 4 1 35 52 18 4 1 192 123 84 26 4 1
Links
- Clark Kimberling, Table of n, a(n) for n = 0..5049
Programs
-
Mathematica
z = 12; f[x_, n_] := x + (n+3)/f[x, n - 1]; f[x_, 0] = 1; t = Table[Factor[f[x, n]], {n, 0, z}]; u = Numerator[t]; TableForm[Rest[Table[CoefficientList[u[[n]], x], {n, 0, z}]]]; Flatten[CoefficientList[u, x]] (* A249057 sequence *)
-
PARI
f(n) = if (n, x + (n + 3)/f(n-1), 1); row(n) = Vecrev(numerator(f(n)), 0); \\ Michel Marcus, Nov 25 2022
Comments