cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249079 a(n) = 29*n + floor( n/29 ) + 0^( 1-floor( (14+(n mod 29))/29 ) ).

Original entry on oeis.org

0, 29, 58, 87, 116, 145, 174, 203, 232, 261, 290, 319, 348, 377, 406, 436, 465, 494, 523, 552, 581, 610, 639, 668, 697, 726, 755, 784, 813, 842, 871, 900, 929, 958, 987, 1016, 1045, 1074, 1103, 1132, 1161, 1190, 1219, 1248, 1278, 1307, 1336
Offset: 0

Views

Author

Karl V. Keller, Jr., Oct 20 2014

Keywords

Comments

This is an approximation to A004942 (Nearest integer to n*phi^7, where phi is the golden ratio, A001622).

Examples

			n= 0, 29*n+floor(0.0) +0^(1-floor(0.48))=    0 +0 +0 =    0 (n/29=0,0^1=0).
n=14, 29*n+floor(0.48)+0^(1-floor(0.97))=  406 +0 +0 =  406 (0^1=0).
n=15, 29*n+floor(0.52)+0^(1-floor(1.0)) =  435 +0 +1 =  436 (0^0=1).
n=28, 29*n+floor(0.97)+0^(1-floor(1.45))=  812 +0 +1 =  813 (0^0=1).
n=29, 29*n+floor(1.0) +0^(1-floor(0.48))=  841 +1 +0 =  842 (n/29*1,0^1=0).
n=43, 29*n+floor(1.48)+0^(1-floor(0.97))= 1247 +1 +0 = 1248 (0^1=0).
n=44, 29*n+floor(1.52)+0^(1-floor(1.0)) = 1276 +1 +1 = 1278 (0^0=1).
n=58, 29*n+floor(2.0) +0^(1-floor(0.48))= 1682 +2 +0 = 1684 (n/29*2,0^1=0).
n=85, 29*n+floor(2.93)+0^(1-floor(1.41))= 2465 +2 +1 = 2468 (0^0=1).
n=86, 29*n+floor(2.97)+0^(1-floor(1.45))= 2494 +2 +1 = 2497 (0^0=1).
n=87, 29*n+floor(3.0) +0^(1-floor(0.48))= 2523 +3 +0 = 2526 (n/29*3,0^0=0).
		

Crossrefs

Cf. A001622 (phi), A195819 (29*n).
Cf. A004942 (round(n*phi^7)), A004922 (floor(n*phi^7)), A004962 (ceiling(n*phi^7)).

Programs

  • Magma
    [29*n + Floor(n/29) + 0^(1-Floor((14+(n mod 29))/29)) : n in [0..50]]; // Vincenzo Librandi, Nov 05 2014
  • PARI
    a(n) = 29*n + n\29 + 0^(1 - (14+(n % 29))\29); \\ Michel Marcus, Oct 25 2014
    
  • Python
    for n in range(101):
        print(29*n+n//29+0**(1-(14+n%29)//29), end=', ')
    
  • Python
    def A249079(n):
        a, b = divmod(n,29)
        return 29*n+a+int(b>=15) # Chai Wah Wu, Jul 27 2022