A249079 a(n) = 29*n + floor( n/29 ) + 0^( 1-floor( (14+(n mod 29))/29 ) ).
0, 29, 58, 87, 116, 145, 174, 203, 232, 261, 290, 319, 348, 377, 406, 436, 465, 494, 523, 552, 581, 610, 639, 668, 697, 726, 755, 784, 813, 842, 871, 900, 929, 958, 987, 1016, 1045, 1074, 1103, 1132, 1161, 1190, 1219, 1248, 1278, 1307, 1336
Offset: 0
Keywords
Examples
n= 0, 29*n+floor(0.0) +0^(1-floor(0.48))= 0 +0 +0 = 0 (n/29=0,0^1=0). n=14, 29*n+floor(0.48)+0^(1-floor(0.97))= 406 +0 +0 = 406 (0^1=0). n=15, 29*n+floor(0.52)+0^(1-floor(1.0)) = 435 +0 +1 = 436 (0^0=1). n=28, 29*n+floor(0.97)+0^(1-floor(1.45))= 812 +0 +1 = 813 (0^0=1). n=29, 29*n+floor(1.0) +0^(1-floor(0.48))= 841 +1 +0 = 842 (n/29*1,0^1=0). n=43, 29*n+floor(1.48)+0^(1-floor(0.97))= 1247 +1 +0 = 1248 (0^1=0). n=44, 29*n+floor(1.52)+0^(1-floor(1.0)) = 1276 +1 +1 = 1278 (0^0=1). n=58, 29*n+floor(2.0) +0^(1-floor(0.48))= 1682 +2 +0 = 1684 (n/29*2,0^1=0). n=85, 29*n+floor(2.93)+0^(1-floor(1.41))= 2465 +2 +1 = 2468 (0^0=1). n=86, 29*n+floor(2.97)+0^(1-floor(1.45))= 2494 +2 +1 = 2497 (0^0=1). n=87, 29*n+floor(3.0) +0^(1-floor(0.48))= 2523 +3 +0 = 2526 (n/29*3,0^0=0).
Links
- Karl V. Keller, Jr., Table of n, a(n) for n = 0..1000
- Ron Knott, Fibonacci numbers
- Eric Weisstein's World of Mathematics, Golden Ratio
- Wikipedia, Golden ratio
- Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1).
Crossrefs
Programs
-
Magma
[29*n + Floor(n/29) + 0^(1-Floor((14+(n mod 29))/29)) : n in [0..50]]; // Vincenzo Librandi, Nov 05 2014
-
PARI
a(n) = 29*n + n\29 + 0^(1 - (14+(n % 29))\29); \\ Michel Marcus, Oct 25 2014
-
Python
for n in range(101): print(29*n+n//29+0**(1-(14+n%29)//29), end=', ')
-
Python
def A249079(n): a, b = divmod(n,29) return 29*n+a+int(b>=15) # Chai Wah Wu, Jul 27 2022
Comments