cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249343 The exponent of the highest power of 3 dividing the product of the elements on the n-th row of Pascal's triangle (A001142(n)).

Original entry on oeis.org

0, 0, 0, 2, 1, 0, 4, 2, 0, 14, 10, 6, 13, 8, 3, 12, 6, 0, 28, 20, 12, 24, 15, 6, 20, 10, 0, 68, 55, 42, 58, 44, 30, 48, 33, 18, 73, 56, 39, 60, 42, 24, 47, 28, 9, 78, 57, 36, 62, 40, 18, 46, 23, 0, 136, 110, 84, 114, 87, 60, 92, 64, 36, 132, 102, 72, 107, 76, 45, 82, 50, 18, 128, 94, 60, 100, 65, 30, 72, 36, 0
Offset: 0

Views

Author

Antti Karttunen, Oct 28 2014

Keywords

Crossrefs

Row sums of A243759.
Row 2 of array A249421.

Programs

  • Haskell
    a249343 = a007949 . a001142  -- Reinhard Zumkeller, Mar 16 2015
  • Mathematica
    A249343[n_] := Sum[#*((#+1)*3^k - n - 1) & [Floor[n/3^k]], {k, Floor[Log[3, n]]}];
    Array[A249343, 100, 0] (* Paolo Xausa, Feb 11 2025 *)
  • PARI
    allocatemem(234567890);
    A249343(n) = sum(k=0, n, valuation(binomial(n, k), 3));
    for(n=0, 6560, write("b249343.txt", n, " ", A249343(n)));
    
  • Scheme
    (define (A249343 n) (add A243759 (A000217 n) (A000096 n)))
    (define (add intfun lowlim uplim) (let sumloop ((i lowlim) (res 0)) (cond ((> i uplim) res) (else (sumloop (+ 1 i) (+ res (intfun i)))))))
    

Formula

a(n) = A007949(A001142(n)).
a(n) = Sum_{k=0..n} A243759(n,k).
a(n) = Sum_{i=1..n} (2*i-n-1)*v_3(i), where v_3(i) = A007949(i) is the exponent of the highest power of 3 dividing i. - Ridouane Oudra, Jun 02 2022
a(n) = Sum_{k=1..floor(log_3(n))} t*((t+1)*3^k - n - 1), where t = floor(n/(3^k)). - Paolo Xausa, Feb 11 2025, derived from Ridouane Oudra's formula above.