cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249346 The exponent of the highest power of 6 dividing the product of the elements on the n-th row of Pascal's triangle.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 4, 0, 0, 10, 10, 4, 13, 8, 3, 0, 6, 0, 28, 20, 12, 24, 15, 6, 20, 10, 0, 16, 47, 22, 26, 0, 30, 48, 33, 18, 73, 56, 39, 40, 42, 24, 47, 28, 9, 54, 57, 16, 62, 40, 18, 46, 23, 0, 82, 32, 84, 94, 87, 44, 92, 52, 36, 0, 102, 72, 107, 76, 45, 82, 50, 18, 128, 94, 60, 100, 65, 30, 72, 36, 0
Offset: 0

Views

Author

Antti Karttunen, Oct 31 2014

Keywords

Comments

Sounds good with MIDI player set to FX-7.

Crossrefs

Minimum of terms A187059(n) and A249343(n).

Programs

  • Haskell
    a249346 = a122841 . a001142  -- Reinhard Zumkeller, Mar 16 2015
  • Mathematica
    IntegerExponent[#,6]&/@Times@@@Table[Binomial[n,k],{n,0,80},{k,0,n}] (* Harvey P. Dale, Nov 21 2023 *)
  • PARI
    A249346(n) = { my(b, s2, s3); s2 = 0; s3 = 0; for(k=0, n, b = binomial(n, k); s2 += valuation(b, 2); s3 += valuation(b, 3)); min(s2,s3); };
    for(n=0, 7775, write("b249346.txt", n, " ", A249346(n)));
    
  • Scheme
    (define (A249346 n) (min (A187059 n) (A249343 n)))
    
  • Scheme
    (define (A249346 n) (A122841 (A001142 n)))
    

Formula

a(n) = min(A187059(n), A249343(n)).
a(n) = A122841(A001142(n)).
Other identities:
a(n) = 0 when A249151(n) < 3.