A249351 Triangle read by rows in which row n lists the widths of the symmetric representation of sigma(n).
1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Examples
Triangle begins: 1; 1,1,1; 1,1,0,1,1; 1,1,1,1,1,1,1; 1,1,1,0,0,0,1,1,1; 1,1,1,1,1,2,1,1,1,1,1; 1,1,1,1,0,0,0,0,0,1,1,1,1; 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1; 1,1,1,1,1,0,0,1,1,1,0,0,1,1,1,1,1; 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1; 1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1; 1,1,1,1,1,1,1,1,1,2,2,2,2,2,1,1,1,1,1,1,1,1,1; ... --------------------------------------------------------------------------- . Written as an isosceles triangle Diagram of . the sequence begins: the symmetry of sigma --------------------------------------------------------------------------- . _ _ _ _ _ _ _ _ _ _ _ _ . 1; |_| | | | | | | | | | | | . 1,1,1; |_ _|_| | | | | | | | | | . 1,1,0,1,1; |_ _| _|_| | | | | | | | . 1,1,1,1,1,1,1; |_ _ _| _|_| | | | | | . 1,1,1,0,0,0,1,1,1; |_ _ _| _| _ _|_| | | | . 1,1,1,1,1,2,1,1,1,1,1; |_ _ _ _| _| | _ _|_| | . 1,1,1,1,0,0,0,0,0,1,1,1,1; |_ _ _ _| |_ _|_| _ _| . 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1; |_ _ _ _ _| _| | . 1,1,1,1,1,0,0,1,1,1,0,0,1,1,1,1,1; |_ _ _ _ _| | _| . 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1; |_ _ _ _ _ _| _ _| . 1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1; |_ _ _ _ _ _| | .1,1,1,1,1,1,1,1,1,2,2,2,2,2,1,1,1,1,1,1,1,1,1; |_ _ _ _ _ _ _| ... From _Omar E. Pol_, Nov 22 2020: (Start) Also consider the infinite double-staircases diagram defined in A335616. For n = 15 the diagram with first 15 levels looks like this: . Level "Double-staircases" diagram . _ 1 _|1|_ 2 _|1 _ 1|_ 3 _|1 |1| 1|_ 4 _|1 _| |_ 1|_ 5 _|1 |1 _ 1| 1|_ 6 _|1 _| |1| |_ 1|_ 7 _|1 |1 | | 1| 1|_ 8 _|1 _| _| |_ |_ 1|_ 9 _|1 |1 |1 _ 1| 1| 1|_ 10 _|1 _| | |1| | |_ 1|_ 11 _|1 |1 _| | | |_ 1| 1|_ 12 _|1 _| |1 | | 1| |_ 1|_ 13 _|1 |1 | _| |_ | 1| 1|_ 14 _|1 _| _| |1 _ 1| |_ |_ 1|_ 15 |1 |1 |1 | |1| | 1| 1| 1| . Starting from A196020 and after the algorithm described in A280850 and A296508 applied to the above diagram we have a new diagram as shown below: . Level "Ziggurat" diagram . _ 6 |1| 7 _ | | _ 8 _|1| _| |_ |1|_ 9 _|1 | |1 1| | 1|_ 10 _|1 | | | | 1|_ 11 _|1 | _| |_ | 1|_ 12 _|1 | |1 1| | 1|_ 13 _|1 | | | | 1|_ 14 _|1 | _| _ |_ | 1|_ 15 |1 | |1 |1| 1| | 1| . The 15th row of this seq: [1,1,1,1,1,1,1,1,0,0,0,1,1,1,2,1,1,1,0,0,0,1,1,1,1,1,1,1,1] The 15th row of A237270: [ 8, 8, 8 ] The 15th row of A296508: [ 8, 7, 1, 0, 8 ] The 15th row of A280851 [ 8, 7, 1, 8 ] . The number of horizontal steps (or 1's) in the successive columns of the above diagram gives the 15th row of this triangle. For more information about the parts of the symmetric representation of sigma(n) see A237270. For more information about the subparts see A239387, A296508, A280851. More generally, it appears there is the same correspondence between the original diagram of the symmetric representation of sigma(n) and the "Ziggurat" diagram of n. (End)
Crossrefs
Cf. A000203, A003056, A067742, A071562, A165513, A196020, A235791, A236104, A237048, A237270, A237271, A237591, A237593, A238443, A239660, A239932-A239934, A240542, A241008, A241010, A245092, A245685, A246955, A246956, A247687, A249223, A250068, A250070, A250071, A262626, A280850, A280851, A296508, A235616, A347186.
Programs
-
Mathematica
(* function segments are defined in A237270 *) a249351[n_] := Flatten[Map[segments, Range[n]]] a249351[10] (* Hartmut F. W. Hoft, Jul 20 2022 *)
Comments