cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249356 8*A200975(n)-7 where A200975 are the numbers on the diagonals in Ulam's spiral.

Original entry on oeis.org

1, 17, 33, 49, 65, 97, 129, 161, 193, 241, 289, 337, 385, 449, 513, 577, 641, 721, 801, 881, 961, 1057, 1153, 1249, 1345, 1457, 1569, 1681, 1793, 1921, 2049, 2177, 2305, 2449, 2593, 2737, 2881, 3041, 3201, 3361, 3521, 3697, 3873, 4049, 4225, 4417, 4609, 4801
Offset: 1

Views

Author

Todd Silvestri, Oct 27 2014

Keywords

Comments

All elements are odd.
The pair (a(n), a(n+1)) is separated by A002265(n-1) elements in A158057.

Programs

  • Maple
    seq(2*n*(n+2)+(-1)^n-4*sin((Pi*n)/2), n=1..100); # Robert Israel, Nov 04 2014
  • Mathematica
    a[n_Integer/;n>0]:=2 n (n+2)+(-1)^n-4 Mod[n^2 (3 n+2),4,-1]
    CoefficientList[Series[-(x^5 - x^4 + 15 x + 1) / ((x - 1)^3 (x^3 + x^2 + x + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 16 2014 *)
    Table[2 n (n + 2) - (1 - (-1)^n) (1 - 2 I^(n + 1)) + 1, {n, 1, 50}] (* Bruno Berselli, Nov 18 2014 *)
    LinearRecurrence[{2,-1,0,1,-2,1},{1,17,33,49,65,97},50] (* Harvey P. Dale, Sep 29 2019 *)
  • PARI
    a(n) = 2*n*(n+2)+(-1)^n-4*round(sin((Pi*n)/2)) \\ Charles R Greathouse IV, Nov 17 2014

Formula

a(n) = 2*n*(n+2)+(-1)^n-4*sin((Pi*n)/2).
G.f.: - x*(x^5-x^4+15*x+1)/((x-1)^3*(x^3+x^2+x+1)).
a(n) = 2*a(n-1) - a(n-2) + 16 if n == 2 mod 4, a(n) = 2*a(n-1) - a(n-2) otherwise. - Robert Israel, Nov 04 2014
a(n) = 2*n*(n+2) - (1-(-1)^n)*(1-2*i^(n+1)) + 1, where i=sqrt(-1). - Bruno Berselli, Nov 18 2014