A249356 8*A200975(n)-7 where A200975 are the numbers on the diagonals in Ulam's spiral.
1, 17, 33, 49, 65, 97, 129, 161, 193, 241, 289, 337, 385, 449, 513, 577, 641, 721, 801, 881, 961, 1057, 1153, 1249, 1345, 1457, 1569, 1681, 1793, 1921, 2049, 2177, 2305, 2449, 2593, 2737, 2881, 3041, 3201, 3361, 3521, 3697, 3873, 4049, 4225, 4417, 4609, 4801
Offset: 1
Links
- Todd Silvestri, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,1,-2,1).
Programs
-
Maple
seq(2*n*(n+2)+(-1)^n-4*sin((Pi*n)/2), n=1..100); # Robert Israel, Nov 04 2014
-
Mathematica
a[n_Integer/;n>0]:=2 n (n+2)+(-1)^n-4 Mod[n^2 (3 n+2),4,-1] CoefficientList[Series[-(x^5 - x^4 + 15 x + 1) / ((x - 1)^3 (x^3 + x^2 + x + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 16 2014 *) Table[2 n (n + 2) - (1 - (-1)^n) (1 - 2 I^(n + 1)) + 1, {n, 1, 50}] (* Bruno Berselli, Nov 18 2014 *) LinearRecurrence[{2,-1,0,1,-2,1},{1,17,33,49,65,97},50] (* Harvey P. Dale, Sep 29 2019 *)
-
PARI
a(n) = 2*n*(n+2)+(-1)^n-4*round(sin((Pi*n)/2)) \\ Charles R Greathouse IV, Nov 17 2014
Formula
a(n) = 2*n*(n+2)+(-1)^n-4*sin((Pi*n)/2).
G.f.: - x*(x^5-x^4+15*x+1)/((x-1)^3*(x^3+x^2+x+1)).
a(n) = 2*a(n-1) - a(n-2) + 16 if n == 2 mod 4, a(n) = 2*a(n-1) - a(n-2) otherwise. - Robert Israel, Nov 04 2014
a(n) = 2*n*(n+2) - (1-(-1)^n)*(1-2*i^(n+1)) + 1, where i=sqrt(-1). - Bruno Berselli, Nov 18 2014
Comments