cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A249433 Integers n such that n! does not divide the product of elements on row n of Pascal's triangle.

Original entry on oeis.org

3, 5, 7, 8, 9, 11, 13, 14, 15, 17, 19, 20, 21, 23, 24, 25, 26, 27, 29, 31, 32, 33, 34, 37, 38, 41, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 59, 61, 63, 64, 65, 67, 68, 69, 71, 73, 74, 75, 76, 77, 80, 81, 84, 85, 86, 87, 90, 91, 92, 93, 94, 95, 97, 98, 99, 101, 103, 105, 109, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 127, 128
Offset: 1

Views

Author

Antti Karttunen, Nov 02 2014

Keywords

Comments

Integers n such that A249151(n) < n.
Equally: Integers n such that A249431(n) is negative.

Examples

			See the examples at A249434.
		

Crossrefs

Complement: A249434.
Subsequences: A000225, A024023, A024049, etc., (after their two initial terms, i.e. A249435 without its initial zero is also a subsequence), A249424, A249436.

A372305 a(n) = Product_{k=2..n-1} MultiplicativeOrder(k,n) where gcd(k,n)=1.

Original entry on oeis.org

1, 1, 2, 2, 32, 2, 648, 8, 648, 32, 12500000, 8, 214990848, 648, 2048, 2048, 562949953421312, 648, 11712917736940032, 2048, 3359232, 12500000, 1377791989621882898843648, 128, 5120000000000000000, 214990848, 11712917736940032
Offset: 1

Views

Author

DarĂ­o Clavijo, Apr 25 2024

Keywords

Comments

All terms are even for n>=3.

Crossrefs

Row products of triangle A216327.

Programs

  • Mathematica
    Table[Times @@ Map[MultiplicativeOrder[#, n] &, Select[Range[2, n - 1], CoprimeQ[n, #] &]], {n, 2, 27}] (* Michael De Vlieger, Apr 25 2024 *)
  • PARI
    a(n) = prod(k=2, n-1, if (gcd(k,n)==1, znorder(Mod(k,n)), 1)); \\ Michel Marcus, Apr 26 2024
  • Python
    from sympy import n_order, gcd, prod
    a = lambda n: prod(n_order(k,n) for k in range(2, n) if gcd(k,n)==1)
    print([a(n) for n in range(1, 28)])
    
Showing 1-2 of 2 results.