A249441 a(n) is the smallest prime whose square divides at least one entry in the n-th row of Pascal's triangle, or 0 if there is no such prime.
0, 0, 0, 0, 2, 0, 2, 0, 2, 2, 2, 0, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 0
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 0..10000
- E. E. Kummer, Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen, J. Reine Angew. Math. 44 (1852), 93-146.
- Mihai Prunescu, Sign-reductions, p-adic valuations, binomial coefficients modulo p^k and triangular symmetries. Preprint 2013.
Programs
-
Maple
a_list := proc(len) local s; s := proc(L,p) local n; seq(max(op(map(b-> padic[ordp](b,p),{seq(binomial(n,k),k=0..n)}))),n=0..L); map(k-> `if`(k<2,0,p),[%]) end: zip((x,y)-> `if`(x=0,y,x),s(len,2),s(len,3)) end: a_list(86); # Peter Luschny, Nov 01 2014 # alternative A249441 := proc(n) local p,wrks,bi,k; if n in [0,1,2,3,5,7,11,23] then return 0 ; end if; p :=2 ; while true do wrks := false; bi := 1 ; for k from 0 to n do if modp(bi,p^2) = 0 then wrks := true; break; end if; bi := bi*(n-k)/(1+k) ; end do: if wrks then return p; end if; p := nextprime(p) ; end do: end proc: # R. J. Mathar, Nov 04 2014
-
Mathematica
row[n_] := Table[Binomial[n, k], {k, 1, (n-Mod[n, 2])/2}]; a[n_] := If[MemberQ[{0, 1, 2, 3, 5, 7, 11, 23}, n], 0, For[p = 2, True, p = NextPrime[p], If[AnyTrue[row[n], Divisible[#, p^2]&], Return[p]]]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jul 30 2018 *)
-
PARI
a(n) = my(o=0); for(k=1,n\2, o+=valuation((n-k+1)/k, 2); if(o>1, return(2))); if(n<24 && n!=15, 0, 3) \\ Charles R Greathouse IV, Nov 03 2014
-
PARI
A249441(n) = { forprime(p=2,3,for(k=0,n\2,if((0==(binomial(n,k)%(p*p))),return(p)))); return(0); } \\ This is more straightforward, but a slower implementation - Antti Karttunen, Nov 03 2014
-
PARI
a(n)=if((n+1)>>valuation(n+1,2)<5, if(n<24 && setsearch([1,2,3,5,7,11,23],n), 0, 3), 2) \\ Charles R Greathouse IV, Nov 06 2014
Extensions
More terms from Peter J. C. Moses, Oct 28 2014
Comments