cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249460 Number of proper colorings of the cube with at most n colors under rotational symmetry.

Original entry on oeis.org

0, 0, 0, 1, 10, 55, 230, 770, 2156, 5250, 11460, 22935, 42790, 75361, 126490, 203840, 317240, 479060, 704616, 1012605, 1425570, 1970395, 2678830, 3588046, 4741220, 6188150, 7985900, 10199475, 12902526, 16178085, 20119330
Offset: 0

Views

Author

Marko Riedel, Oct 29 2014

Keywords

Comments

All terms 3 mod 10 end in 1, all terms 8 mod 10 end in 6 and vice versa. - Jon Perry, Oct 29 2014
Also the number of inequivalent ways to color the corners of an octahedron using at most n colors so that no two adjacent corners have the same color. - David Nacin, Feb 22 2017

Examples

			For n = 3 we see there is only a(3) = 1 way to color the faces of a cube with three colors so that no two adjacent sides have the same color. - _David Nacin_, Feb 22 2017
		

Programs

  • Magma
    [(n-2)*(n-1)*n*(n^3-9*n^2+32*n-38)/24: n in [0..30]]; // Vincenzo Librandi, Oct 30 2014
    
  • Maple
    q := N -> 1/24*(N*(N-1)*(N-2)*(N^3-9*N^2+29*N-32) + 3*N*(N-1)*(N-2)^2);
  • Mathematica
    Table[(n - 2) (n - 1) n (n^3 - 9 n^2 + 32 n - 38)/24, {n, 0, 30}] (* Bruno Berselli, Oct 30 2014 *)
    CoefficientList[Series[x^3 (1 + 3 x + 6 x^2 + 20 x^3)/(1 - x)^7, {x, 0, 30}], x] (* Vincenzo Librandi, Oct 30 2014 *)
  • PARI
    a(n)=(n-2)*(n-1)*n*(n^3-9*n^2+32*n-38)/24 \\ Charles R Greathouse IV, Feb 23 2017

Formula

a(n) = ( n*(n-1)*(n-2)*(n^3-9*n^2+29*n-32) + 3*n*(n-1)*(n-2)^2 )/24 = (n-2)*(n-1)*n*(n^3-9*n^2+32*n-38)/24.
G.f.: x^3*(1+3*x+6*x^2+20*x^3)/(1-x)^7. - Vincenzo Librandi, Oct 30 2014