A249460 Number of proper colorings of the cube with at most n colors under rotational symmetry.
0, 0, 0, 1, 10, 55, 230, 770, 2156, 5250, 11460, 22935, 42790, 75361, 126490, 203840, 317240, 479060, 704616, 1012605, 1425570, 1970395, 2678830, 3588046, 4741220, 6188150, 7985900, 10199475, 12902526, 16178085, 20119330
Offset: 0
Examples
For n = 3 we see there is only a(3) = 1 way to color the faces of a cube with three colors so that no two adjacent sides have the same color. - _David Nacin_, Feb 22 2017
Links
- Marko R. Riedel, Proper colorings of the cube, Mathematics Stack Exchange, Oct 29 2014
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Programs
-
Magma
[(n-2)*(n-1)*n*(n^3-9*n^2+32*n-38)/24: n in [0..30]]; // Vincenzo Librandi, Oct 30 2014
-
Maple
q := N -> 1/24*(N*(N-1)*(N-2)*(N^3-9*N^2+29*N-32) + 3*N*(N-1)*(N-2)^2);
-
Mathematica
Table[(n - 2) (n - 1) n (n^3 - 9 n^2 + 32 n - 38)/24, {n, 0, 30}] (* Bruno Berselli, Oct 30 2014 *) CoefficientList[Series[x^3 (1 + 3 x + 6 x^2 + 20 x^3)/(1 - x)^7, {x, 0, 30}], x] (* Vincenzo Librandi, Oct 30 2014 *)
-
PARI
a(n)=(n-2)*(n-1)*n*(n^3-9*n^2+32*n-38)/24 \\ Charles R Greathouse IV, Feb 23 2017
Formula
a(n) = ( n*(n-1)*(n-2)*(n^3-9*n^2+29*n-32) + 3*n*(n-1)*(n-2)^2 )/24 = (n-2)*(n-1)*n*(n^3-9*n^2+32*n-38)/24.
G.f.: x^3*(1+3*x+6*x^2+20*x^3)/(1-x)^7. - Vincenzo Librandi, Oct 30 2014
Comments