cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249490 a(n) = Sum_{m=0..floor((n-1)/2)} prime((n-m)(n-m-1)/2+m+1).

Original entry on oeis.org

2, 3, 12, 28, 63, 113, 208, 296, 473, 657, 946, 1236, 1661, 2071, 2688, 3228, 4059, 4811, 5898, 6858, 8209, 9433, 11116, 12572, 14637, 16395, 18872, 21046, 23935, 26405, 29836, 32742, 36695, 40007, 44480, 48254, 53405, 57681, 63488, 68284, 74791, 80149, 87374
Offset: 1

Views

Author

George Stagg, Oct 30 2014

Keywords

Comments

Arrange the prime numbers into a triangle, with 2 at the top, 3 and 5 in the second row, 7, 11 and 13 in the third row, and so on:
2
3 5
7 11 13
17 19 23 29
31 37 41 43 47
...
The n-th term in the sequence is then the sum of the numbers in the upward diagonal beginning on the n-th row of this triangle.

Examples

			a(1) = 2; a(2) = 3; a(3) = 7+5 = 12; a(4) = 17+11 = 28.
		

Crossrefs

Programs

  • Maple
    A249490:=n->add(ithprime((n-m)*(n-m-1)/2+m+1), m=0..floor((n-1)/2)): seq(A249490(n), n=1..50); # Wesley Ivan Hurt, Nov 07 2014
  • Mathematica
    Table[Sum[Prime[(n - m) (n - m - 1)/2 + m + 1], {m, 0, Floor[(n - 1)/2]}], {n, 50}] (* Wesley Ivan Hurt, Nov 07 2014 *)
  • PARI
    a(n) = sum(m=0,(n-1)\2, prime((n-m)*(n-m-1)/2+m+1)); \\ Michel Marcus, Nov 04 2014

Formula

a(n) = Sum_{m=0..floor((n-1)/2)} prime((n-m)(n-m-1)/2+m+1).