A249572 Least positive integer whose decimal digits divide the plane into n+1 regions. Equivalently, least positive integer with n holes in its decimal digits.
1, 4, 8, 48, 88, 488, 888, 4888, 8888, 48888, 88888, 488888, 888888, 4888888, 8888888, 48888888, 88888888, 488888888, 888888888, 4888888888, 8888888888, 48888888888, 88888888888, 488888888888, 888888888888, 4888888888888, 8888888888888, 48888888888888
Offset: 0
Examples
From _Jon E. Schoenfield_, Nov 15 2014: (Start) This sequence uses "holey" fours. So a(1)=4, because . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXXX . . XX XX . . XX XX . . XX XX . . XX XX . . XX XX . . XX XX . . XX XX . . XX XX . . XX XX . . XX XX . . XX XX . . XX XX . . XX XX . . XX XX . . XX XX . . XXXXXXXXXXXXX . . XXXXXXXXXXXXX . . XX . . XX . . XX . . XX . . XX . . XX . . XX . . XX . . XX . . XX . . . . . . "Holey" 4 . . "Non-holey" 4 . . . . . . . . . . . . . . . . . . . . . . . . . (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2000
- Brady Haran and N. J. A. Sloane, What Number Comes Next? (2018), Numberphile video.
- Julia Witte Zimmerman, Denis Hudon, Kathryn Cramer, Jonathan St. Onge, Mikaela Fudolig, Milo Z. Trujillo, Christopher M. Danforth, and Peter Sheridan Dodds, A blind spot for large language models: Supradiegetic linguistic information, arXiv:2306.06794 [cs.CL], 2023.
- Index entries for sequences related to holes in digits
- Index entries for linear recurrences with constant coefficients, signature (1,10,-10).
Crossrefs
Programs
-
Magma
I:=[1,4,8,48]; [n le 4 select I[n] else 10*Self(n-2)+8: n in [1..30]]; // Vincenzo Librandi, Nov 17 2014
-
Maple
a:= n-> `if`(n=0, 1, parse(cat(4*(irem(n, 2, 'q')), 8$q))): seq(a(n), n=0..30); # Alois P. Heinz, Nov 01 2014
-
Mathematica
LinearRecurrence[{1,10,-10},{1,4,8,48},50] (* Paolo Xausa, May 31 2023 *)
-
PARI
A249572(n)=10^(n\2)*if(n%2,45-(n>1)*5,22)\45 \\ "(...,9-(n>1),4.4)\9" would be shorter but cause problems beyond realprecision. - M. F. Hasler, Jul 25 2015
Formula
a(n) = 10*a(n-2) + 8 for n >= 3.
From Chai Wah Wu, Dec 14 2016: (Start)
a(n) = a(n-1) + 10*a(n-2) - 10*a(n-3) for n > 4.
G.f.: (10*x^3 - 6*x^2 + 3*x + 1)/((x - 1)*(10*x^2 - 1)). (End)
a(n) = (2/9)*(10^(n/2)*(4*((n+1) mod 2) + 11*sqrt(2/5)*(n mod 2)) - 4) for n >= 1. - Alan Michael Gómez Calderón, May 04 2025
Extensions
Offset corrected by Brady Haran, Nov 27 2018
Comments