A250256 Least positive integer whose decimal digits divide the plane into n regions (A249572 variant).
1, 6, 8, 68, 88, 688, 888, 6888, 8888, 68888, 88888, 688888, 888888, 6888888, 8888888, 68888888, 88888888, 688888888, 888888888, 6888888888, 8888888888, 68888888888, 88888888888, 688888888888, 888888888888, 6888888888888, 8888888888888, 68888888888888
Offset: 1
Examples
The integer 68, whose decimal digits have 3 holes, divides the plane into 4 regions. No smaller positive integer does this, so a(4) = 68.
Links
- Brady Haran and N. J. A. Sloane, What Number Comes Next? (2018), Numberphile video
- Index entries for linear recurrences with constant coefficients, signature (1,10,-10).
Programs
-
Magma
I:=[1,6,8,68]; [n le 4 select I[n] else 10*Self(n-2)+8: n in [1..30]]; // Vincenzo Librandi, Nov 15 2014
-
Mathematica
Join[{1, 6, 8}, RecurrenceTable[{a[1]==68, a[2]==88, a[n]==10 a[n-2] + 8}, a, {n, 20}]] (* Vincenzo Librandi, Nov 16 2014 *)
Formula
a(n) = 10*a(n-2) + 8 for n >= 4.
From Chai Wah Wu, Jul 12 2016: (Start)
a(n) = a(n-1) + 10*a(n-2) - 10*a(n-3) for n > 4.
G.f.: x*(10*x^3 - 8*x^2 + 5*x + 1)/((x - 1)*(10*x^2 - 1)). (End)
E.g.f.: (9 + 45*x - 40*cosh(x) + 31*cosh(sqrt(10)*x) - 40*sinh(x) + 4*sqrt(10)*sinh(sqrt(10)*x))/45. - Stefano Spezia, Aug 11 2025
Comments