Original entry on oeis.org
1, 2, 3, 4, 6, 10, 12, 18, 20, 24, 30, 36, 42, 54, 60, 66, 72, 78, 84, 90, 102, 108, 114, 120, 126, 138, 148, 150, 156, 168, 174, 180, 186, 192, 198, 204, 210, 222, 228, 234, 240, 246, 252, 260, 268, 270, 282, 288, 294, 300, 312, 318, 324, 330, 336, 342, 350, 354, 360, 372, 378
Offset: 1
A084937
Smallest number which is coprime to the last two predecessors and has not yet appeared; a(1)=1, a(2)=2.
Original entry on oeis.org
1, 2, 3, 5, 4, 7, 9, 8, 11, 13, 6, 17, 19, 10, 21, 23, 16, 15, 29, 14, 25, 27, 22, 31, 35, 12, 37, 41, 18, 43, 47, 20, 33, 49, 26, 45, 53, 28, 39, 55, 32, 51, 59, 38, 61, 63, 34, 65, 57, 44, 67, 69, 40, 71, 73, 24, 77, 79, 30, 83, 89, 36, 85, 91, 46, 75, 97, 52, 81
Offset: 1
Cf.
A084933 (inverse),
A103683,
A121216,
A247665,
A090252,
A249603 (read mod 3),
A249680,
A249681,
A249682,
A249683 (trisections),
A249694,
A011655,
A249684 (numbers that take a record number of steps to appear),
A249685.
-
import Data.List (delete)
a084937 n = a084937_list !! (n-1)
a084937_list = 1 : 2 : f 2 1 [3..] where
f x y zs = g zs where
g (u:us) | gcd y u > 1 || gcd x u > 1 = g us
| otherwise = u : f u x (delete u zs)
-- Reinhard Zumkeller, Jan 28 2012
-
N:= 1000: # to get a(n) until the first entry > N
a[1]:= 1: a[2]:= 2:
R:= {$3..N}:
for n from 3 while R <> {} do
success:= false;
for r in R do
if igcd(r,a[n-1]) = 1 and igcd(r,a[n-2])=1 then
a[n]:= r;
R:= R minus {r};
success:= true;
break
fi
od:
if not success then break fi;
od:
seq(a[i], i = 1 .. n-1); # Robert Israel, Dec 12 2014
-
lst={1,2,3}; unused=Range[4,100]; While[n=Select[unused, CoprimeQ[#, lst[[-1]]] && CoprimeQ[#, lst[[-2]]] &, 1]; n != {}, AppendTo[lst, n[[1]]]; unused=DeleteCases[unused, n[[1]]]]; lst
f[s_] := Block[{k = 1, l = Take[s, -2]}, While[ Union[ GCD[k, l]] != {1} || MemberQ[s, k], k++]; Append[s, k]]; Nest[f, {1, 2}, 67] (* Robert G. Wilson v, Jun 26 2011 *)
-
taken(k,t=v[k])=for(i=3,k-1, if(v[i]==t, return(1))); 0
step(k,g)=while(gcd(k,g)>1, k++); k
first(n)=local(v=vector(n,i,i)); my(nxt=3,t); for(k=3,n, v[k]=step(nxt, t=v[k-1]*v[k-2]); while(taken(k), v[k]=step(v[k]+1,t)); if(v[k]==t, while(taken(k+1,t++),))); v \\ Charles R Greathouse IV, Aug 26 2016
-
from math import gcd
A084937_list, l1, l2, s, b = [1,2], 2, 1, 3, set()
for _ in range(10**3):
i = s
while True:
if not i in b and gcd(i,l1) == 1 and gcd(i,l2) == 1:
A084937_list.append(i)
l2, l1 = l1, i
b.add(i)
while s in b:
b.remove(s)
s += 1
break
i += 1 # Chai Wah Wu, Dec 09 2014
A249777
Let z = A084937: a(n) = number of numbers <= z(n) that are != z(k) for k=1..n-1 and not coprime to z(n-1) and z(n-2).
Original entry on oeis.org
0, 0, 0, 1, 0, 1, 2, 1, 2, 3, 0, 5, 6, 0, 6, 7, 3, 2, 10, 1, 5, 6, 3, 7, 10, 0, 10, 13, 0, 13, 16, 0, 5, 15, 1, 11, 16, 1, 6, 15, 2, 11, 16, 4, 16, 17, 2, 17, 12, 5, 16, 17, 3, 17, 18, 0, 20, 21, 0, 23, 28, 0, 23, 27, 1, 15, 30, 3, 17, 26, 4, 19, 28, 2, 21
Offset: 1
. n | A084937(n) | unused numbers less than A084937(n) | a(n)
. ----+------------+------------------------------------------+-----
. 3 | 3 | _ | 0
. 4 | 5 | 4 | 1
. 5 | 4 | _ | 0
. 6 | 7 | 6 | 1
. 7 | 9 | 6, 8 | 2
. 8 | 8 | 6 | 1
. 9 | 11 | 6, 10 | 2
. 10 | 13 | 6, 10, 12 | 3
. 11 | 6 | _ | 0
. 12 | 17 | 10, 12, 14, 15, 16 | 5
. 13 | 19 | 10, 12, 14, 15, 16, 18 | 6
. 14 | 10 | _ | 0
. 15 | 21 | 12, 14, 15, 16, 18, 20 | 6
. 16 | 23 | 12, 14, 15, 16, 18, 20, 22 | 7
. 17 | 16 | 12, 14, 15 | 3
. 18 | 15 | 12, 14 | 2
. 19 | 29 | 12, 14, 18, 20, 22, 24, 25, 26, 27, 28 | 10
. 20 | 14 | 12 | 1
. 21 | 25 | 12, 18, 20, 22, 24 | 5
. 22 | 27 | 12, 18, 20, 22, 24, 26 | 6
. 23 | 22 | 12, 18, 20 | 3
. 24 | 31 | 12, 18, 20, 24, 26, 28, 30 | 7
. 25 | 35 | 12, 18, 20, 24, 26, 28, 30, 32, 33, 34 | 10 .
Original entry on oeis.org
1, 2, 3, 5, 4, 11, 6, 8, 7, 14, 9, 26, 10, 20, 18, 17, 12, 29, 13, 32, 15, 23, 16, 56, 21, 35, 22, 38, 19, 59, 24, 41, 33, 47, 25, 62, 27, 44, 39, 53, 28, 95, 30, 50, 36, 65, 31, 92, 34, 74, 42, 68, 37, 98, 40, 71, 49, 77, 43, 101, 45, 80, 46, 83, 48, 137, 51, 86, 52
Offset: 1
-
import Data.List (elemIndex)
import Data.Maybe (fromJust)
a084933 n = (fromJust $ elemIndex n a084937_list) + 1
-- Reinhard Zumkeller, Jan 28 2012
-
f[s_] := Block[{k = 1, l = Take[s, -2]}, While[ Union[ GCD[k, l]] != {1} || MemberQ[s, k], k++]; Append[s, k]]; Ordering@ Nest[f, {1, 2}, 100] (* Robert G. Wilson v, Jun 26 2011 *)
Showing 1-4 of 4 results.
Comments