A249993 Expansion of 1/((1+x)*(1+2*x)*(1-4*x)).
1, 1, 11, 29, 147, 525, 2227, 8653, 35123, 139469, 559923, 2235597, 8950579, 35785933, 143176499, 572640461, 2290692915, 9162509517, 36650562355, 146601200845, 586406900531, 2345623407821, 9382502019891, 37529991302349, 150119998763827, 600479927946445
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,10,8).
Crossrefs
Programs
-
Magma
[(2^(2*n+3) +(-1)^n*(5*2^(n+1)-3))/15: n in [0..40]]; // G. C. Greubel, Oct 10 2022
-
Mathematica
CoefficientList[Series[1/((1+x)(1+2x)(1-4x)),{x,0,30}],x] (* or *) LinearRecurrence[{1,10,8},{1,1,11},30] (* Harvey P. Dale, Dec 13 2018 *)
-
PARI
Vec(1/((1+x)*(1+2*x)*(1-4*x)) + O(x^40)) \\ Michel Marcus, Dec 28 2014
-
SageMath
[(2^(2*n+3) +(-1)^n*(5*2^(n+1)-3))/15 for n in range(41)] # G. C. Greubel, Oct 10 2022
Formula
G.f.: 1/((1+x)*(1+2*x)*(1-4*x)).
a(n) = ( 2^(3+2*n) + (5*2^(1+n) - 3)*(-1)^n )/15. Colin Barker, Dec 28 2014
a(n) = a(n-1) + 10*a(n-2) + 8*a(n-3). - Colin Barker, Dec 28 2014
E.g.f.: (1/15)*(10*exp(-2*x) - 3*exp(-x) + 8*exp(4*x)). - G. C. Greubel, Oct 10 2022