A250000 Peaceable coexisting armies of queens: the maximum number m such that m white queens and m black queens can coexist on an n X n chessboard without attacking each other.
0, 0, 1, 2, 4, 5, 7, 9, 12, 14, 17, 21, 24, 28, 32
Offset: 1
Examples
Some examples, in increasing order of size of board. n=3: There is a unique solution (up to obvious symmetries): +-------+ | W . . | | . . . | | . B . | +-------+ n=4: There are ten inequivalent solutions, up to obvious symmetries (_Rob Pratt_, Jul 29 2015, with two more discovered by _Benoit Jubin_, Mar 17 2019; total of 10 confirmed by _Rob Pratt_, Mar 18 2019): ---------------------------------------------------------- |..B.||.B..||.B..||....||.BB.||..B.||...W||..B.|..B.|..W.| |....||.B..||...B||.B.B||....||.B..||.B..||...B|B...|B...| |...B||....||....||....||....||...W||..B.||.W..|...W|...B| |WW..||W.W.||W.W.||W.W.||W..W||W...||W...||W...|.W..|.W..| ---------------------------------------------------------- n=5: One of the three solutions for n=5 puts one set of four queens in the corners and the other set in the squares a knight's move away, as follows: +-----------+ | W . . . W | | . . B . . | | . B . B . | | . . B . . | | W . . . W | +-----------+ There are two other solutions (up to symmetry) for n=5 (found by _Rob Pratt_, circa Sep 2014): +-----------+ | . . B . B | | W . . . . | | . . B . B | | W . . . . | | . W . W . | +-----------+ . +-----------+ | . W . W . | | . . W . . | | B . . . B | | . . W . . | | B . . . B | +-----------+ n=6: A solution for n=6: +-------------+ | . W W . . . | | . . W . . W | | . . . . . W | | . . . . . . | | B . . . B . | | B . . B B . | +-------------+ n=8: a(8) = 9: +-----------------+ | . . W W . . . . | | . . W W . . . W | | . . W . . . W W | | . . . . . . W W | | . B . . . . . . | | B B . . . . . . | | B B . . . B . . | | B . . . B B . . | - _Rob Pratt_, Jul 29 2015 +-----------------+ n=9: A solution from _Bob Selcoe_, Feb 07 2015: +-------------------+ | . B . B . B . B . | | . . B . . . B . . | | W . . . W . . . W | | . . B . . . B . . | | W . . . W . . . W | | . . B . . . B . . | | W . . . W . . . W | | . . B . . . B . . | | W . . . W . . . W | +-------------------+ A solution for n=12 (from Prestwich/Beck paper): +-------------------------+ | . . . B B B . . . . . B | | . . . B B B . . . . B . | | . . . B B B . . . B . B | | . . . . B . . . . . B B | | . . . . . . . . . B B B | | . . . . . . . . . B B . | | . . W . . . W . . . . . | | . W W . . . . . . . . . | | W W W . . . . . W . . . | | W W . . . . . W W . . . | | W . W . . . W W W . . . | | . W . . . . W W W . . . | +-------------------------+ A solution for n=13 (from Prestwich/Beck paper): +---------------------------+ | B . . . B . B . . . B . B | | . . W . . . . . W . . . . | | . W . W . W . W . W . W . | | . . W . . . . . W . . . . | | B . . . B . B . . . B . B | | . . W . . . . . W . . . . | | B . . . B . B . . . B . B | | . . W . . . . . W . . . . | | . W . W . W . W . W . W . | | . . W . . . . . W . . . . | | B . . . B . B . . . B . B | | . . W . . . . . W . . . . | | B . . . B . B . . . B . B | +---------------------------+ From _Bob Selcoe_, Feb 07 2015: (Start) An alternative solution for n=13: +---------------------------+ | . B . B . B . B . B . B . | | . . B . . . B . . . B . . | | W . . . W . . . W . . . W | | . . B . . . B . . . B . . | | W . . . W . . . W . . . W | | . . B . . . B . . . B . . | | W . . . W . . . W . . . W | | . . B . . . B . . . B . . | | W . . . W . . . W . . . W | | . . B . . . B . . . B . . | | W . . . W . . . W . . . W | | . . B . . . B . . . B . . | | W . . . W . . . W . . . W | +---------------------------+ n=15, a fully symmetrical optimal configuration from _Paul Tabatabai_, Oct 16 2018: +-------------------------------+ | B . B . B . . . . . B . B . B | | . . . . . . W W W . . . . . . | | B . B . B . . . . . B . B . B | | . . . . . . W . W . . . . . . | | B . B . . . . . . . . . B . B | | . . . . . . W . W . . . . . . | | . W . W . W . W . W . W . W . | | . W . . . . W . W . . . . W . | | . W . W . W . W . W . W . W . | | . . . . . . W . W . . . . . . | | B . B . . . . . . . . . B . B | | . . . . . . W . W . . . . . . | | B . B . B . . . . . B . B . B | | . . . . . . W W W . . . . . . | | B . B . B . . . . . B . B . B | +-------------------------------+ n=17: A 42-queen arrangement (the best presently known) for n=17, from _Rob Pratt_, Feb 07 2014: +-----------------------------------+ | . . . . W W W W W . . . . . . . . | | . . . . W W W W W . . . . . . . . | | . . . . W W W W W . . . . . . . W | | . . . . W W W W . . . . . . . W W | | . . . . W W W . . . . . . . W W W | | . . . . . W . . . . . . . W W W W | | . . . . . . . . . . . . . W W W W | | . . . . . . . . . . . . . W W W . | | . . . . . . . . . . . . . W W . . | | . . B B . . . . . . . . . . . . . | | . B B B . . . . . . . . . . . . . | | B B B B . . . . . . . . . . . . . | | B B B B . . . . . . . B . . . . . | | B B B B . . . . . . B B B . . . . | | B B B B . . . . . B B B B . . . . | | B B B . . . . . . B B B B . . . . | | B B . . . . . . . B B B B . . . . | +-----------------------------------+ From _Bob Selcoe_, Feb 09 2015: (Start) Two alternative 42-queen arrangements for n=17 (inspired by _Rob Pratt_). Other arrangements exist. Alternative 1: +-----------------------------------+ | . . . . . W W W W W . . . . . . . | | . . . . . W W W W W . . . . . . . | | . . . . . W W W W W . . . . . . W | | . . . . . W W W W . . . . . . W W | | . . . . . W W W . . . . . . W W W | | . . . . . . W . . . . . . W W W W | | . . . . . . . . . . . . . W W W W | | . . . . . . . . . . . . . W W W . | | . . . . . . . . . . . . . W W . . | | . . . B B . . . . . . . . . . . . | | . . B B B . . . . . . . . . . . . | | . B B B B . . . . . . . . . . . . | | B B B B B . . . . . . B B . . . . | | B B B B B . . . . . B B B . . . . | | B B B B . . . . . . B B B . . . . | | B B B . . . . . . . B B B . . . . | | B B . . . . . . . . B B B . . . . | +-----------------------------------+ Alternative 2: +-----------------------------------+ | . . . . W W W W . . . . . . . . W | | . . . . W W W W . . . . . . . W W | | . . . . W W W W . . . . . . W W W | | . . . . W W W W . . . . . W W W W | | . . . . . W W . . . . . . W W W W | | . . . . . . . . . . . . . W W W W | | . . . . . . . . . . . . . W W W . | | . . . . . . . . . . . . . W W . . | | . . . . . . . . . . . . . W . . . | | . . B B . . . . . . . . . . . . . | | . B B B . . . . . . . . . . . . . | | B B B B . . . . . . . B . . . . . | | B B B B . . . . . . B B B . . . . | | B B B . . . . . . B B B B . . . . | | B B . . . . . . B B B B B . . . . | | B . . . . . . . B B B B B . . . . | | . . . . . . . . B B B B B . . . . | +-----------------------------------+ Example of an alternative n=20, 58-queen arrangement with "cracked" blocks from _Bob Selcoe_, May 23 2017: +-----------------------------------------+ | . . . . . W W W W W . . . . . . . . W . | | . . . . . W W W W W . . . . . . . W . W | | . . . . . W W W W W . . . . . . W . W W | | . . . . . W W W W W . . . . . W . W W W | | . . . . . W W W W . . . . . . . W W W W | | . . . . . W W W . . . . . . . W W W W W | | . . . . . . W . . . . . . . . W W W W . | | . . . . . . . . . . . . . . . W W W . . | | . . . . . . . . . . . . . . . W W . . . | | . . . . . . . . . W . . . . . W . . . . | | . . . B B . . . . . . . . . . . . . . . | | . . B B B . . . . . . . . . . . . . . . | | . B B B B . . . . . . . . . . . . . . . | | B B B B B . . . . . . . B . . . . . . . | | B B B B . . . . . . . B B B . . . . . . | | B B B . B . . . . . B B B B B . . . . . | | B B . B . . . . . . B B B B B . . . . . | | B . B . . . . . . . B B B B B . . . . . | | . B . . . . . . . . B B B B B . . . . . | | B . . . . . . . . . B B B B B . . . . . | +-----------------------------------------+ Pattern for n = 4m; four chessboards total. Board 1: n=12, a(12)=21: +-------------------------+ | . . . W W W . . . . . . | | . . . W W W . . . . . W | | . . . W W W . . . . W W | | . . . . W . . . . W W W | | . . . . . . . . . W W W | | . . . . . . . . . W W . | | . . B . . . . . . . . . | | . B B . . . . . . . . . | | B B B . . . . . B . . . | | B B B . . . . B B . . . | | B B . . . . B B B . . . | | B . . . . . B B B . . . | +-------------------------+ Board 2: n=16, 37-queen arrangement: +---------------------------------+ | . . . . W W W W . . . . . . . . | | . . . . W W W W . . . . . . . W | | . . . . W W W W . . . . . . W W | | . . . . W W W W . . . . . W W W | | . . . . . W W . . . . . W W W W | | . . . . . . . . . . . . W W W W | | . . . . . . . . . . . . W W W . | | . . . . . . . . . . . . W W . . | | . . . B . . . . . . . . . . . . | | . . B B . . . . . . . . . . . . | | . B B B . . . . . . . . . . . . | | B B B B . . . . . . B B . . . . | | B B B B . . . . . B B B . . . . | | B B B . . . . . B B B B . . . . | | B B . . . . . . B B B B . . . . | | B . . . . . . . B B B B . . . . | +---------------------------------+ Board 3: n=20, 58-queen arrangement: +-----------------------------------------+ | . . . . . W W W W W . . . . . . . . . . | | . . . . . W W W W W . . . . . . . . . W | | . . . . . W W W W W . . . . . . . . W W | | . . . . . W W W W W . . . . . . . W W W | | . . . . . W W W W W . . . . . . W W W W | | . . . . . . W W W . . . . . . W W W W W | | . . . . . . . W . . . . . . . W W W W W | | . . . . . . . . . . . . . . . W W W W . | | . . . . . . . . . . . . . . . W W W . . | | . . . . . . . . . . . . . . . W W . . . | | . . . . B . . . . . . . . . . . . . . . | | . . . B B . . . . . . . . . . . . . . . | | . . B B B . . . . . . . . . . . . . . . | | . B B B B . . . . . . . . B . . . . . . | | B B B B B . . . . . . . B B B . . . . . | | B B B B B . . . . . . B B B B . . . . . | | B B B B . . . . . . B B B B B . . . . . | | B B B . . . . . . . B B B B B . . . . . | | B B . . . . . . . . B B B B B . . . . . | | B . . . . . . . . . B B B B B . . . . . | +-----------------------------------------+ Board 4: n=24, 83-queen arrangement: +-------------------------------------------------+ | . . . . . . W W W W W W . . . . . . . . . . . . | | . . . . . . W W W W W W . . . . . . . . . . . W | | . . . . . . W W W W W W . . . . . . . . . . W W | | . . . . . . W W W W W W . . . . . . . . . W W W | | . . . . . . W W W W W W . . . . . . . . W W W W | | . . . . . . W W W W W W . . . . . . . W W W W W | | . . . . . . . W W W W . . . . . . . W W W W W W | | . . . . . . . . W W . . . . . . . . W W W W W W | | . . . . . . . . . . . . . . . . . . W W W W W . | | . . . . . . . . . . . . . . . . . . W W W W . . | | . . . . . . . . . . . . . . . . . . W W W . . . | | . . . . . . . . . . . . . . . . . . W W . . . . | | . . . . . B . . . . . . . . . . . . . . . . . . | | . . . . B B . . . . . . . . . . . . . . . . . . | | . . . B B B . . . . . . . . . . . . . . . . . . | | . . B B B B . . . . . . . . . . . . . . . . . . | | . B B B B B . . . . . . . . . B B . . . . . . . | | B B B B B B . . . . . . . . B B B B . . . . . . | | B B B B B B . . . . . . . B B B B B . . . . . . | | B B B B B . . . . . . . B B B B B B . . . . . . | | B B B B . . . . . . . . B B B B B B . . . . . . | | B B B . . . . . . . . . B B B B B B . . . . . . | | B B . . . . . . . . . . B B B B B B . . . . . . | | B . . . . . . . . . . . B B B B B B . . . . . . | +-------------------------------------------------+ (End) Example of an alternative n=20, 58-queen arrangement with "cracked" blocks from _Bob Selcoe_, May 23 2017: +-----------------------------------------+ | . . . . . W W W W W . . . . . . . . W . | | . . . . . W W W W W . . . . . . . W . W | | . . . . . W W W W W . . . . . . W . W W | | . . . . . W W W W W . . . . . W . W W W | | . . . . . W W W W . . . . . . . W W W W | | . . . . . W W W . . . . . . . W W W W W | | . . . . . . W . . . . . . . . W W W W . | | . . . . . . . . . . . . . . . W W W . . | | . . . . . . . . . . . . . . . W W . . . | | . . . . . . . . . W . . . . . W . . . . | | . . . B B . . . . . . . . . . . . . . . | | . . B B B . . . . . . . . . . . . . . . | | . B B B B . . . . . . . . . . . . . . . | | B B B B B . . . . . . . B . . . . . . . | | B B B B . . . . . . . B B B . . . . . . | | B B B . B . . . . . B B B B B . . . . . | | B B . B . . . . . . B B B B B . . . . . | | B . B . . . . . . . B B B B B . . . . . | | . B . . . . . . . . B B B B B . . . . . | | B . . . . . . . . . B B B B B . . . . . | +-----------------------------------------+ . n = 24: An 84-queen arrangement found by _Benoit Jubin_, Feb 24 2015 (see Comments above). +-------------------------------------------------+ | . . . . . . W W W W W W . . . . . . . . . . . . | | . . . . . . W W W W W W . . . . . . . . . . . W | | . . . . . . W W W W W W . . . . . . . . . . W W | | . . . . . . W W W W W W . . . . . . . . . W W W | | . . . . . . W W W W W W . . . . . . . . W W W W | | . . . . . . W W W W W . . . . . . . . W W W W W | | . . . . . . . W W W . . . . . . . . W W W W W W | | . . . . . . . . W . . . . . . . . . W W W W W W | | . . . . . . . . . . . . . . . . . . W W W W W W | | . . . . . . . . . . . . . . . . . . W W W W W . | | . . . . . . . . . . . . . . . . . . W W W W . . | | . . . . . . . . . . . . . . . . . . W W W . . . | | . . . . B B . . . . . . . . . . . . . . . . . . | | . . . B B B . . . . . . . . . . . . . . . . . . | | . . B B B B . . . . . . . . . . . . . . . . . . | | . B B B B B . . . . . . . . . . . . . . . . . . | | B B B B B B . . . . . . . . . . B . . . . . . . | | B B B B B B . . . . . . . . . B B B . . . . . . | | B B B B B B . . . . . . . . B B B B . . . . . . | | B B B B B . . . . . . . . B B B B B . . . . . . | | B B B B . . . . . . . . B B B B B B . . . . . . | | B B B . . . . . . . . . B B B B B B . . . . . . | | B B . . . . . . . . . . B B B B B B . . . . . . | | B . . . . . . . . . . . B B B B B B . . . . . . | +-------------------------------------------------+ . A solution for n = 27 with 106 queens found by _Dmitry Kamenetsky_, Oct 18 2019 +-------------------------------------------------------+ | . . . . . . . . . . . . W W W W W W W . . . . . . . . | | . . . . . . . . . . . . W W W W W W W . . . . . . . . | | W . . . . . . . . . . . W W W W W W W . . . . . . . . | | W W . . . . . . . . . . W W W W W W W . . . . . . . . | | W W W . . . . . . . . . W W W W W W W . . . . . . . . | | W W W W . . . . . . . . . W W W W W W . . . . . . . . | | W W W W W . . . . . . . . . W W W W W . . . . . . . . | | W W W W W W . . . . . . . . . W W W . . . . . . . . . | | W W W W W W . . . . . . . . . . W . W . . . . . . . . | | W W W W W W . . . . . . . . . . . W . . . . . . . . . | | W W W W W W . . . . . . . . . . . . . . . . . . . . . | | . W W W W W . . . . . . . . . . . . . . . . . . . . . | | . . W W W W . . . . . . . . . . . . . . . . . . . . . | | . . . W W W . . . . . . . . . . . . . . . . . . . . . | | . . . . W W . . . . . . W . . . . . . . . . . . . . . | | . . . . . . . . . . . . . . . . . . . B B B B . . . . | | . . . . . . . . . . . . . . . . . . . B B B B B . . . | | . . . . . . . . . . . . . . . . . . . B B B B B B . . | | . . . . . . . B . . . . . . . . . . . B B B B B B B . | | . . . . . . B . B . . . . . . . . . . B B B B B B B B | | . . . . . . . B B B . . . . . . . . . B B B B B B B B | | . . . . . . B B B B B . . . . . . . . . B B B B B B B | | . . . . . . B B B B B B . . . . . . . . . B B B B B B | | . . . . . . B B B B B B . . . . . . . . . . B B B B B | | . . . . . . B B B B B B . . . . . . . . . . . B B B B | | . . . . . . B B B B B B . . . . . . . . . . . . B B B | | . . . . . . B B B B B B . . . . . . . . . . . . . B B | +-------------------------------------------------------+
References
- Stephen Ainley, Mathematical Puzzles. London: G Bell & Sons, 1977.
- Donald E. Knuth, Satisfiability, Fascicle 6, volume 4 of The Art of Computer Programming. Addison-Wesley, 2015, page 180, Problem 488; see also pp. 282-283.
Links
- Stephen Ainley, Mathematical Puzzles, London: G Bell & Sons, 1977. [Annotated scan of page 27]
- Stephen Ainley, Mathematical Puzzles, London: G Bell & Sons, 1977. [Annotated scan of a portion of page 31]
- Stephen Ainley, Mathematical Puzzles, London: G Bell & Sons, 1977. [Annotated scan of a portion of page 32]
- Robert A. Bosch, Peaceably coexisting armies of queens, Optima (Newsletter of the Mathematical Programming Society) 62.6-9 (1999): 271.
- Robert A. Bosch, Peaceably coexisting armies of queens, Optima (Newsletter of the Mathematical Programming Society) 62.6-9 (1999): 271. [Scanned copy of page containing the problem, with permission]
- Robert A. Bosch, Armies of Queens, Revisited, Optima (Newsletter of the Mathematical Programming Society) 64 (2000): 15.
- Robert A. Bosch, Armies of Queens, Revisited, Optima (Newsletter of the Mathematical Programming Society) 64 (2000): 15. [Scanned copy of section of page containing the article, with permission]
- Katie Clinch, Matthew Drescher, Tony Huynh, and Abdallah Saffidine, Constructions, bounds, and algorithms for peaceable queens, arXiv:2406.06974 [math.CO], 2024. See p. 1.
- Brady Haran and N. J. A. Sloane, Peaceable Queens, Numberphile video (2019).
- Daniel M. Kane, Asymptotic Results for the Queen Packing Problem, arXiv:1703.04538 [math.CO], 2017.
- Michael De Vlieger, "Peace to the Max" T-shirt illustrating a(11)=17
- Michael De Vlieger, "Peace to the Max" T-shirt illustrating a(11)=17 [Version with no background, suitable for printing]
- Michael De Vlieger, Graphic illustrations of other solutions
- Benoit Jubin, Improved lower bound for A250000, Posting to Sequence Fans Mailing List, Feb 24 2015, with comments from Rob Pratt and Bob Selcoe.
- Dmitry Kamenetsky, Best known solutions for 12 <= n <= 30.
- Dmitry Kamenetsky, Java program to compute the best known solutions.
- Peter Karpov, InvMem, see Item 22
- Peter Karpov, InvMem, see Item 22 [Scanned copy of Item 22, with permission.]
- Peter Karpov, An asymptotic configuration with density 7/48 (Not known to be optimal.)
- Donald Knuth, Problem presented at Ron Graham's 80th Birthday Dinner (June 2015; includes an extension to three armies).
- Steven Prestwich and J. Christopher Beck, Exploiting Dominance in Three Symmetric Problems, in Proceedings Fourth International Workshop on Symmetry and Constraint Satisfaction Problems (SymCon'04), (2004) pp. 63-70; also available from http://zeynep.web.cs.unibo.it/SymCon04/proceedings.html
- N. J. A. Sloane, Confessions of a Sequence Addict (AofA2017), slides of invited talk given at AofA 2017, Jun 19 2017, Princeton. Mentions this sequence.
- Barbara M. Smith, Karen E. Petrie, and Ian P. Gent, Models and symmetry breaking for 'Peaceable armies of queens', Lecture Notes in Computer Science 3011 (2004), 271-286. [Version on St Andrews web site, 16 pages.]
- Barbara M. Smith, Karen E. Petrie, and Ian P. Gent, Models and symmetry breaking for 'Peaceable armies of queens', Lecture Notes in Computer Science 3011 (2004), 271-286. [Version on ResearchGate web site, 17 pages]
- Barbara M. Smith, Karen E. Petrie, and Ian P. Gent, Models and symmetry breaking for 'Peaceable armies of queens', Lecture Notes in Computer Science 3011 (2004), 271-286. [Cached copy, from ResearchGate]
- Barbara M. Smith, Karen E. Petrie, and Ian P. Gent, Equal sized armies of queens on an 11x11 board (Fig. 2 from the reference).
- Paul Tabatabai, Three illustrations for a(14) = 28.
- Yukun Yao and Doron Zeilberger, Numerical and Symbolic Studies of the Peaceable Queens Problem, Feb 14, 2019; see also arXiv:1902.05886 [math.CO], 2019, Exp. Math. 31 (2022) 269-279
Crossrefs
Formula
There is an asymptotic lower bound of (9/64)*n^2. But see Comments for a better lower bound.
Extensions
Uniqueness of n = 5 example corrected by Rob Pratt, Nov 30 2014
a(12)-a(13) obtained from Prestwich/Beck paper by Rob Pratt, Nov 30 2014
More examples from Rob Pratt, Dec 01 2014
a(1)-a(13) confirmed and bounds added for n = 14 to 20 obtained via integer linear programming by Rob Pratt, Dec 01 2014
28 <= a(14) <= 43, 32 <= a(15) <= 53, 37 <= a(16) <= 64, 42 <= a(17) <= 72, 47 <= a(18) <= 81, 52 <= a(19) <= 90, 58 <= a(20) <= 100. - Rob Pratt, Dec 01 2014
Bounds obtained by simulated annealing: a(21) >= 64, a(22) >= 70, a(23) >= 77, a(24) >= 84. - Peter Karpov, Apr 03 2016
a(14)-a(15) from Paul Tabatabai using integer programming, Oct 16 2018
Edited by N. J. A. Sloane, Nov 18 2018 to include comments from Benoit Jubin, Feb 24 2015 which were posted to the Sequence Fans Mailing List but were not added to this entry until today.
Counts for n=4 edited by N. J. A. Sloane, Mar 19 2019. See A260680 for more information.
Comments