cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A250111 Number of orbits of size 2 in vertices of Fibonacci cube Gamma_n under the action of its automorphism group.

Original entry on oeis.org

1, 1, 1, 3, 4, 9, 13, 25, 38, 68, 106, 182, 288, 483, 771, 1275, 2046, 3355, 5401, 8811, 14212, 23112, 37324, 60580, 97904, 158717, 256621, 415715, 672336, 1088661, 1760997, 2850645, 4611642, 7463884, 12075526, 19541994, 31617520, 51163695, 82781215
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2014

Keywords

Crossrefs

Programs

  • Magma
    [n eq 1 select 1 else (1/2)*(Fibonacci(n+2)-Fibonacci(Floor((n-(-1)^n)/2)+2)): n in [1..40]]; // Vincenzo Librandi, Nov 22 2014
    
  • Mathematica
    LinearRecurrence[{1,2,-1,0,-1,-1},{1,1,1,3,4,9,13},40] (* Harvey P. Dale, Feb 10 2018 *)
  • PARI
    a(n)=if(n==1,1,(fibonacci(n+2) - fibonacci((n-(-1)^n)\2+2))/2); \\ Joerg Arndt, Nov 22 2014
    
  • PARI
    Vec(x*(1-2*x^2+x^3+x^5+x^6)/((1-x-x^2)*(1-x^2-x^4)) + O(x^100)) \\ Colin Barker, Dec 01 2014
    
  • SageMath
    def A250111(n): return bool(n==1) + sum( fibonacci(j+1)*fibonacci(n-2*j-1) for j in (0..((n-1)//2)) )
    [A250111(n) for n in (1..50)] # G. C. Greubel, Apr 06 2022

Formula

a(n) = (1/2) * (F(n+2) - F(floor((n-(-1)^n)/2)+2)) for n >= 2, a(1)=1. - Joerg Arndt, Nov 22 2014
a(n) = a(n-1)+2*a(n-2)-a(n-3)-a(n-5)-a(n-6) for n>7. - Colin Barker, Dec 01 2014
G.f.: x*(1-2*x^2+x^3+x^5+x^6)/((1-x-x^2)*(1-x^2-x^4)). - Colin Barker, Dec 01 2014
From G. C. Greubel, Apr 06 2022: (Start)
a(n) = [n=1] + Sum_{k=0..floor((n-1)/2)} Fibonacci(k+1)*Fibonacci(n-2*k-1).
a(2*n) = (1/2)*(Fibonacci(2*n+2) - Fibonacci(n+1)), n >= 1.
a(2*n+1) = (1/2)*(Fibonacci(2*n+3) - Fibonacci(n+3) + 2*[n=0]), n >= 0. (End)

Extensions

More terms from Vincenzo Librandi, Nov 22 2014