A250309 a(n) = a(n-1)*(1 + a(n-1)/a(n-3)), with a(0) = a(1) = a(2) = 1.
1, 1, 1, 2, 6, 42, 924, 143220, 488523420, 258285263294520, 465795819523189050504840, 444125576385425970712647062585372630520, 763680920404535561780141108036287312478667174369871222219397040
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..17
Programs
-
Magma
I:=[1,1,1]; [n le 3 select I[n] else Self(n-1)*(1 + Self(n-1)/Self(n-3)): n in [1..15]]; // G. C. Greubel, Aug 03 2018
-
Mathematica
RecurrenceTable[{a[n]==a[n-1]*(1 + a[n-1]/a[n-3]), a[0]==1, a[1]==1, a[2]==1},a,{n,0,12}] (* Vaclav Kotesovec, Jan 18 2015 *)
-
PARI
{a(n) = if( n<3, n>=0, a(n-1)*(1 + a(n-1)/a(n-3)))};
Formula
0 = a(n)*(a(n+2) - a(n+3)) + a(n+2)*a(n+2) for all n>=0.
A007660(n+1) = a(n)/a(n-1).
a(n) ~ b * f^(d^n), where b = 0.270887790039424376..., f = c^(2+sqrt(5)) = 1.574173161904651669837597516422779594... and d = (1+sqrt(5))/2. For the constant c = A258113 = 1.11305797590293193285359770716758491... see A007660. - Vaclav Kotesovec, Jan 18 2015