cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A007660 a(n) = a(n-1)*a(n-2) + 1 with a(0) = a(1) = 0.

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 7, 22, 155, 3411, 528706, 1803416167, 953476947989903, 1719515742866809222961802, 1639518622529236077952144318816050685207, 2819178082162327154499022366029959843954512194276761760087463015
Offset: 0

Views

Author

Keywords

Comments

If we omit the first three terms of the sequence, a(n)/a(n-1) can be expressed as the continued fraction [a(n-2); a(n-1)]. - Eric Angelini, Feb 10 2005
This may be regarded as a multiplicative dual of the Fibonacci sequence A000045. Write Fibonacci's formula as F(0)=0, F(1)=1; F(n)=[F(n-1)+F(n-2)]*1 with n>1. Swap '+' and '*' and we have the present sequence! - B. Joshipura (bhushit(AT)yahoo.com), Aug 29 2007
a(n+1) divides a(2n+1), a(3n+1), a(4n+1), etc., this is because modulo a(n+1): a(1)=a(n+1)=0 and a(2)=a(n+2)=1 so the sequence repeats modulo a(n+1) with period n. - Isaac Kaufmann, Sep 04 2020

Examples

			b(10) / b(5) = 1803416167 / 7 = 257630881. - _Michael Somos_, Dec 29 2012
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a007660 n = a007660_list !! n
    a007660_list = 0 : 0 : map (+ 1)
                           (zipWith (*) a007660_list $ tail a007660_list)
    -- Reinhard Zumkeller, Jan 17 2015
    
  • Magma
    I:=[0,0]; [n le 2 select I[n] else Self(n-1)*Self(n-2)+1: n in [1..20]]; // Vincenzo Librandi, Nov 14 2011
    
  • Mathematica
    a[0] = a[1] = 0; a[n_] := a[n - 1]*a[n - 2] + 1; Table[ a[n], {n, 0, 15} ]
    RecurrenceTable[{a[0]==a[1]==0,a[n]==a[n-1]a[n-2]+1},a,{n,20}] (* Harvey P. Dale, Nov 12 2011 *)
  • Maxima
    a(n) := if (n=0 or n=1) then 0 else a(n-1)*a(n-2)+1 $
    makelist(a(n),n,0,18); /* Emanuele Munarini, Mar 24 2017 */

Formula

a(n) is asymptotic to c^(phi^n) where phi = (1 + sqrt(5))/2 and c = A258113 = 1.1130579759029319... - Benoit Cloitre, Sep 26 2003
b(n) = a(n+1) is a divisibility sequence. - Michael Somos, Dec 29 2012

A258113 Decimal expansion of a constant related to A007660.

Original entry on oeis.org

1, 1, 1, 3, 0, 5, 7, 9, 7, 5, 9, 0, 2, 9, 3, 1, 9, 3, 2, 8, 5, 3, 5, 9, 7, 7, 0, 7, 1, 6, 7, 5, 8, 4, 9, 1, 9, 0, 6, 6, 0, 0, 1, 8, 1, 5, 1, 0, 1, 8, 6, 5, 2, 7, 2, 0, 1, 4, 3, 7, 9, 7, 2, 4, 2, 0, 6, 9, 2, 7, 7, 1, 7, 2, 9, 7, 9, 8, 8, 2, 5, 9, 3, 8, 1, 6, 0, 9, 3, 6, 1, 4, 5, 4, 4, 5, 9, 4, 3, 5, 2, 2, 3, 4, 5
Offset: 1

Views

Author

Vaclav Kotesovec, May 20 2015

Keywords

Examples

			1.1130579759029319328535977071675849190660018151018652720143797242069...
		

Crossrefs

Programs

  • Mathematica
    A007660 = RecurrenceTable[{a[1]==0, a[2]==N[1,200], a[n]==a[n-1]*a[n-2]+1},a[n],{n,1,30}]; Do[Print[N[Exp[c2]/.Solve[Table[Log[A007660[[n]]]==c1*((1-Sqrt[5])/2)^n + c2*((1+Sqrt[5])/2)^n, {n,k,k+1}]], 120][[1]]],{k, Length[A007660]-2, Length[A007660]-1}];

Formula

Equals limit n->infinity (A007660(n))^((2/(1+sqrt(5)))^n).

A276416 a(n) = a(n-1)*(1 + a(n-1)/a(n-4)), with a(0) = a(1) = a(2) = a(3) = 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 6, 42, 1806, 1632624, 444245153520, 4698898962968253924720, 12225720633546031105793020748137513851120, 91550929674875028299231929179221527919681972461210779957660001348767546720
Offset: 0

Views

Author

Seiichi Manyama, Sep 02 2016

Keywords

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n] == a[n - 1] (1 + a[n - 1]/a[n - 4]), a[0] == a[1] == a[2] == a[3] == 1}, a, {n, 0, 12}] (* Michael De Vlieger, Sep 04 2016 *)
    nxt[{a_,b_,c_,d_}]:={b,c,d,d(1+d/a)}; NestList[nxt,{1,1,1,1},12][[;;,1]] (* Harvey P. Dale, May 08 2025 *)
  • Ruby
    def A(m, n)
      a = Array.new(m, 1)
      ary = [1]
      while ary.size < n + 1
        break if a[-1] % a[0] > 0
        a = *a[1..-1], a[-1] * (1 + a[-1] / a[0])
        ary << a[0]
      end
      ary
    end
    def A276416(n)
      A(4, n)
    end

Formula

0 = a(n)*(a(n+3) - a(n+4)) + a(n+3)*a(n+3) for all n>=0.
A133400(n) = a(n+1)/a(n).
Showing 1-3 of 3 results.