cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A258113 Decimal expansion of a constant related to A007660.

Original entry on oeis.org

1, 1, 1, 3, 0, 5, 7, 9, 7, 5, 9, 0, 2, 9, 3, 1, 9, 3, 2, 8, 5, 3, 5, 9, 7, 7, 0, 7, 1, 6, 7, 5, 8, 4, 9, 1, 9, 0, 6, 6, 0, 0, 1, 8, 1, 5, 1, 0, 1, 8, 6, 5, 2, 7, 2, 0, 1, 4, 3, 7, 9, 7, 2, 4, 2, 0, 6, 9, 2, 7, 7, 1, 7, 2, 9, 7, 9, 8, 8, 2, 5, 9, 3, 8, 1, 6, 0, 9, 3, 6, 1, 4, 5, 4, 4, 5, 9, 4, 3, 5, 2, 2, 3, 4, 5
Offset: 1

Views

Author

Vaclav Kotesovec, May 20 2015

Keywords

Examples

			1.1130579759029319328535977071675849190660018151018652720143797242069...
		

Crossrefs

Programs

  • Mathematica
    A007660 = RecurrenceTable[{a[1]==0, a[2]==N[1,200], a[n]==a[n-1]*a[n-2]+1},a[n],{n,1,30}]; Do[Print[N[Exp[c2]/.Solve[Table[Log[A007660[[n]]]==c1*((1-Sqrt[5])/2)^n + c2*((1+Sqrt[5])/2)^n, {n,k,k+1}]], 120][[1]]],{k, Length[A007660]-2, Length[A007660]-1}];

Formula

Equals limit n->infinity (A007660(n))^((2/(1+sqrt(5)))^n).

A333974 Eventual period of A007660 modulo n.

Original entry on oeis.org

1, 3, 4, 3, 7, 12, 5, 3, 8, 21, 6, 12, 15, 15, 28, 3, 31, 24, 23, 21, 20, 6, 13, 12, 28, 15, 24, 15, 46, 84, 7, 3, 12, 93, 35, 24, 20, 69, 60, 21, 25, 60, 44, 6, 56, 39, 14, 12, 30, 84, 124, 15, 84, 24, 42, 15, 92, 138, 11, 84, 117, 21, 40, 3, 105, 12, 121, 93
Offset: 1

Views

Author

Isaac Kaufmann, Sep 03 2020

Keywords

Comments

Multiplicative: If n = p^x * q^y * ... for distinct primes p,q,... then a(n) = a(p^x) * a(q^y) * ...

Examples

			a(1) is trivially 1.
For n=2 the sequence is 0, {0,1,1}, {0,1,1}, hence a(2) = 3.
For n=3 the sequence is 0, {0,1,1,2}, {0,1,1,2}, hence a(3) = 4.
For n=4 the sequence is 0,0,1,1, {2,3,3}, {2,3,3}, hence a(4) = 3.
For n=5 the sequence is 0, {0,1,1,2,3,2,2}, {0,1,1,2,3,2,2}, hence a(5) = 7.
		

Programs

Formula

a(n) | a(k*n), k=2,3,...

Extensions

More terms from Jinyuan Wang, Sep 04 2020

A055937 a(n) = a(n-1) * a(n-2) - 1.

Original entry on oeis.org

2, 2, 3, 5, 14, 69, 965, 66584, 64253559, 4278258972455, 274893365303916717344, 1176065006579831683931038116759519, 323292467474902888912311701915651931811127805144397535
Offset: 1

Views

Author

Robert G. Wilson v, Jul 05 2000

Keywords

Crossrefs

A152446 uses largest prime < a(n-1)*a(n-2) instead of subtracting 1. - Joshua D. Olson, Sep 29 2015

Programs

  • Magma
    I:=[2,2]; [n le 2 select I[n] else Self(n-1)*Self(n-2)-1: n in [1..15]]; // Vincenzo Librandi, Sep 30 2015
    
  • Mathematica
    RecurrenceTable[{a[1]==a[2]==2, a[n]==a[n-1]*a[n-2] -1}, a, {n, 15}] (* Vincenzo Librandi, Sep 30 2015 *)
    nxt[{a_,b_}]:={b,a*b-1}; NestList[nxt,{2,2},15][[All,1]] (* Harvey P. Dale, Dec 05 2020 *)
  • PARI
    a(n) = if(n<3, 2, a(n-1)*a(n-2)-1);
    vector(15, n, a(n)) \\ Altug Alkan, Sep 30 2015
    
  • Sage
    @cached_function
    def a(n):
        if n == 1 or n == 2:
            return 2
        else:
            return a(n - 1) * a(n - 2) - 1
    [a(n) for n in range(1, 16)]  # G. C. Greubel, Jun 07 2019

Formula

a(n) ~ c^(phi^n), where c = 1.26679081808631741720378389711... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jun 15 2019

A250309 a(n) = a(n-1)*(1 + a(n-1)/a(n-3)), with a(0) = a(1) = a(2) = 1.

Original entry on oeis.org

1, 1, 1, 2, 6, 42, 924, 143220, 488523420, 258285263294520, 465795819523189050504840, 444125576385425970712647062585372630520, 763680920404535561780141108036287312478667174369871222219397040
Offset: 0

Views

Author

Michael Somos, Jan 16 2015

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,1,1]; [n le 3 select I[n] else Self(n-1)*(1 + Self(n-1)/Self(n-3)): n in [1..15]]; // G. C. Greubel, Aug 03 2018
  • Mathematica
    RecurrenceTable[{a[n]==a[n-1]*(1 + a[n-1]/a[n-3]), a[0]==1, a[1]==1, a[2]==1},a,{n,0,12}] (* Vaclav Kotesovec, Jan 18 2015 *)
  • PARI
    {a(n) = if( n<3, n>=0, a(n-1)*(1 + a(n-1)/a(n-3)))};
    

Formula

0 = a(n)*(a(n+2) - a(n+3)) + a(n+2)*a(n+2) for all n>=0.
A007660(n+1) = a(n)/a(n-1).
a(n) ~ b * f^(d^n), where b = 0.270887790039424376..., f = c^(2+sqrt(5)) = 1.574173161904651669837597516422779594... and d = (1+sqrt(5))/2. For the constant c = A258113 = 1.11305797590293193285359770716758491... see A007660. - Vaclav Kotesovec, Jan 18 2015

A121258 a(n) = a(n-1)*a(n-2)*a(n-3) - 1 with a(0)=a(1)=a(2)=2.

Original entry on oeis.org

2, 2, 2, 7, 27, 377, 71252, 725274107, 19482315963330427, 1006792136061113006060577048627
Offset: 0

Views

Author

Jonathan Vos Post, Aug 22 2006

Keywords

Comments

Analog of A055937 a(n) = a(n-1)*a(n-2) - 1. What is the equivalent continued fraction and asymptotic representation, by analogy to A007660 a(n) = a(n-1)*a(n-2) + 1?

Crossrefs

Programs

  • Magma
    I:=[2,2,2]; [n le 3 select I[n] else Self(n-1)*Self(n-2)* Self(n-3)-1: n in [1..12]]; // Vincenzo Librandi, Nov 14 2011
    
  • Mathematica
    RecurrenceTable[{a[0]==a[1]==a[2]==2, a[n] == a[n-1]*a[n-2]*a[n-3] - 1}, a, {n, 0, 15}] (* G. C. Greubel, Jun 07 2019 *)
    nxt[{a_,b_,c_}]:={b,c,a*b*c-1}; NestList[nxt,{2,2,2},10][[All,1]] (* Harvey P. Dale, Jun 25 2020 *)
  • PARI
    a(n) = if(n<3, 2, a(n-1)*a(n-2)*a(n-3) - 1);
    vector(12, n, n--; a(n)) \\ G. C. Greubel, Jun 07 2019
    
  • Sage
    def a(n):
        if (n==0 or n==1 or n==2): return 2
        else: return a(n-1)*a(n-2)*a(n-3) - 1
    [a(n) for n in (0..12)] # G. C. Greubel, Jun 07 2019

Formula

a(n) ~ c^(A058265^n), where c = 1.3319334322065642848267... - Vaclav Kotesovec, Jun 15 2019

Extensions

Data corrected by Vincenzo Librandi, Nov 14 2011

A133400 a(0)=a(1)=a(2) = 1, thereafter a(n) = a(n-1)*a(n-2)*a(n-3) + 1.

Original entry on oeis.org

1, 1, 1, 2, 3, 7, 43, 904, 272105, 10577265561, 2601826668310218121, 7488387181338771882437732599874506, 206081999881071045385328009597554265108557649484947339933019787
Offset: 0

Views

Author

Jonathan Vos Post, Nov 24 2007, Nov 26 2007

Keywords

Comments

A tribonacci analog of A001056.
a(13) has 115 digits. - R. J. Mathar, Dec 10 2007

Examples

			a(8) = a(7)*a(6)*a(5) + 1 = 904 * 43 * 7 + 1 = 272105.
a(9) ~ 2.60182667 * 10^18.
a(10) ~ 7.48838719 * 10^33.
a(11) ~ 2.06082 * 10^62.
		

Crossrefs

Programs

  • GAP
    a:=[1,1,1];; for n in [4..15] do a[n]:=a[n-1]*a[n-2]*a[n-3]+1; od; a; # G. C. Greubel, Sep 20 2019
  • Magma
    I:=[1,1,1]; [n le 3 select I[n] else Self(n-1)*Self(n-2)* Self(n-3) + 1: n in [1..15]]; // G. C. Greubel, Sep 20 2019
    
  • Maple
    A133400 := proc(n) local i ; if n <= 2 then 1; else 1+mul( A133400(i),i=n-3..n-1) ; fi ; end: seq(A133400(n),n=0..15) ; # R. J. Mathar, Dec 10 2007
  • Mathematica
    RecurrenceTable[{a[0]==1,a[1]==1,a[2]==1, a[n] == a[n-1]*a[n-2]*a[n-3] + 1},a,{n,0,15}] (* Vaclav Kotesovec, May 05 2015 *)
    nxt[{a_,b_,c_}]:={b,c,a*b*c+1}; NestList[nxt,{1,1,1},15][[All,1]] (* Harvey P. Dale, Mar 05 2017 *)
  • PARI
    m=15; v=concat([1,1,1], vector(m-3)); for(n=4, m, v[n]=v[n-1]*v[n-2] *v[n-3] +1 ); v \\ G. C. Greubel, Sep 20 2019
    
  • Sage
    def a(n):
        if (n<3): return 1
        else: return a(n-1)*a(n-2)*a(n-3) + 1
    [a(n) for n in (0..15)] # G. C. Greubel, Sep 20 2019
    

Formula

a(n) ~ c^(t^n), where c = 1.1004451797920944914628..., t = A058265 = 1.8392867552141611325518... . - Vaclav Kotesovec, May 05 2015

Extensions

More terms from R. J. Mathar, Dec 10 2007

A253853 a(n) = 1 + a(n-2)*a(n-3), with a(0) = a(1) = a(2) = 1.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 5, 7, 16, 36, 113, 577, 4069, 65202, 2347814, 265306939, 153082168429, 622891345681347, 40613761521380428832, 95353557892558423217593864, 25297960567233966143149250083396705, 3872666660463510383775257066365338059531886849
Offset: 0

Views

Author

Michael Somos, Jan 17 2015

Keywords

Crossrefs

Cf. A007660.

Programs

  • Haskell
    a253853 n = a253853_list !! n
    a253853_list = 1 : 1 : 1 : map (+ 1)
                               (zipWith (*) a253853_list $ tail a253853_list)
    -- Reinhard Zumkeller, Jan 17 2015
    
  • Magma
    I:=[1,1,1]; [n le 3 select I[n] else 1 + Self(n-2)*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jan 22 2015
  • Mathematica
    RecurrenceTable[{a[n]==1+a[n-2]*a[n-3],a[0]==1,a[1]==1,a[2]==1},a,{n,0,20}] (* Vaclav Kotesovec, Jan 17 2015 *)
  • PARI
    {a(n) = if( n<3, n>=0, 1 + a(n-2)*a(n-3))};
    

Formula

a(n+5) == a(n) (mod 2) for all n>=0.
a(n+7) == a(n) (mod 7) for all n>=7.
a(n) ~ c^(d^n), where c = 1.33114442478885300080049... and d = ((27 - 3*sqrt(69)) / 2)^(1/3) / 3 + ((9 + sqrt(69))/2)^(1/3) / 3^(2/3) = 1.324717957244746... is the root of the equation d^3 = d + 1. - Vaclav Kotesovec, Jan 17 2015

A089983 1, 1, 1, 1, ... a, b, c, d, ab-cd, ...

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, -1, 1, 2, -3, 5, 17, -91, 1532, 139497, -213710951, 29812036392235, 6371158648631364574889, -189937213493701003981668660072118562, 1210120120447335073097142485947209203511752911347585124133
Offset: 1

Views

Author

Ray Chandler, following a suggestion of Rainer Rosenthal, Nov 18 2003

Keywords

Comments

Inspired by the formula for the determinant of a 2 X 2 matrix.
Sequence b(n,p) = a(n) (mod p), p prime, is a periodic sequence. Letting l(p) denotes the length of the period of b(n,p) we get l(2)=5, l(3)=11, l(5)=31... Is there any rule for l(p) ? - Benoit Cloitre, Nov 19 2003

Crossrefs

Cf. A089984.

Programs

  • Magma
    I:=[1,1,1,1]; [n le 4 select I[n] else -Self(n-1)*Self(n-2)+Self(n-3)*Self(n-4): n in [1..22]]; // Vincenzo Librandi, Mar 30 2014
  • Mathematica
    nxt[{a_,b_,c_,d_}]:={b,c,d,a b-c d}; NestList[nxt,{1,1,1,1},20][[All,1]] (* Harvey P. Dale, Oct 30 2021 *)
  • PARI
    a=b=c=d=1;for(n=5,20,e=a*b-c*d;a=b;b=c;c=d;d=e;print1(e,","))
    

Formula

a(1)=a(2)=a(3)=a(4)=1, for n>4 a(n)=a(n-4)*a(n-3)-a(n-2)*a(n-1).
a(n) is asymptotic (in absolute value) to A^(phi^n) where phi=golden ratio and A=1.005384.. (follows same kind of behavior as A000301, A007660) - Benoit Cloitre, Nov 19 2003

A142471 a(0) = a(1) = 0; thereafter a(n) = a(n-1)*a(n-2) + 2.

Original entry on oeis.org

0, 0, 2, 2, 6, 14, 86, 1206, 103718, 125083910, 12973452977382, 1622770224612082123622, 21052933202100473722674133293917606, 34164073141115747076263787631563122725393126176374288934
Offset: 0

Views

Author

N. J. A. Sloane, based on email from Carla J. Garner-Bennett, Nov 13 2008

Keywords

Crossrefs

Programs

  • Magma
    I:=[0,0]; [n le 2 select I[n] else Self(n-1)*Self(n-2)+2: n in [1..15]]; // Vincenzo Librandi, Nov 14 2011
    
  • Maple
    a:= proc(n) option remember;
          if n<2 then 0
        else a(n-1)*a(n-2) + 2
          fi; end:
    seq(a(n), n=0..15); # G. C. Greubel, Apr 03 2021
  • Mathematica
    a[0] = a[1] = 0; a[n_] := a[n-1] a[n-2] + 2; Table[a[n], {n, 0, 15}] (* T. D. Noe, Nov 14 2011 *)
  • Sage
    def a(n): return 0 if n<2 else a(n-1)*a(n-2) + 2
    [a(n) for n in (0..15)] # G. C. Greubel, Apr 03 2021

Formula

a(n) ~ c^(phi^n), where c = 1.278178162398588325773605473403497130099080978627235683548955136178125... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, May 21 2015

A143684 a(0) = a(1) = 0; thereafter a(n) = 2*a(n-1)*a(n-2) + 1.

Original entry on oeis.org

0, 0, 1, 1, 3, 7, 43, 603, 51859, 62541955, 6486726488691, 811385112306041061811, 10526466601050236861337066646958803, 17082036570557873538131893815781561362696563088187144467, 359626974875792367278553795120318710475396935851854517275793126801351587742904492716786003
Offset: 0

Views

Author

N. J. A. Sloane, based on email from Carla J. Garner-Bennett, Nov 13 2008

Keywords

Crossrefs

Programs

  • Magma
    I:=[0,0]; [n le 2 select I[n] else 2*Self(n-1)*Self(n-2)+1: n in [1..15]]; // Vincenzo Librandi, Nov 14 2011
    
  • Mathematica
    a[n_]:=a[n]=If[n<2,0, 2*a[n-1]*a[n-2]+1]; Table[a[n], {n,0,15}] (* G. C. Greubel, May 29 2021 *)
  • Sage
    def a(n): return 0 if (n<2) else 2*a(n-1)*a(n-2) + 1
    [a(n) for n in (0..10)] # G. C. Greubel, May 29 2021

Formula

Equals A142471/2.
a(n) is about 1/2*c^(phi^n), where c = 1.27817816239858832577... and phi is the golden ratio. - Charles R Greathouse IV, Mar 21 2012, corrected by Vaclav Kotesovec, May 05 2015
Showing 1-10 of 15 results. Next