cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A007660 a(n) = a(n-1)*a(n-2) + 1 with a(0) = a(1) = 0.

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 7, 22, 155, 3411, 528706, 1803416167, 953476947989903, 1719515742866809222961802, 1639518622529236077952144318816050685207, 2819178082162327154499022366029959843954512194276761760087463015
Offset: 0

Views

Author

Keywords

Comments

If we omit the first three terms of the sequence, a(n)/a(n-1) can be expressed as the continued fraction [a(n-2); a(n-1)]. - Eric Angelini, Feb 10 2005
This may be regarded as a multiplicative dual of the Fibonacci sequence A000045. Write Fibonacci's formula as F(0)=0, F(1)=1; F(n)=[F(n-1)+F(n-2)]*1 with n>1. Swap '+' and '*' and we have the present sequence! - B. Joshipura (bhushit(AT)yahoo.com), Aug 29 2007
a(n+1) divides a(2n+1), a(3n+1), a(4n+1), etc., this is because modulo a(n+1): a(1)=a(n+1)=0 and a(2)=a(n+2)=1 so the sequence repeats modulo a(n+1) with period n. - Isaac Kaufmann, Sep 04 2020

Examples

			b(10) / b(5) = 1803416167 / 7 = 257630881. - _Michael Somos_, Dec 29 2012
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a007660 n = a007660_list !! n
    a007660_list = 0 : 0 : map (+ 1)
                           (zipWith (*) a007660_list $ tail a007660_list)
    -- Reinhard Zumkeller, Jan 17 2015
    
  • Magma
    I:=[0,0]; [n le 2 select I[n] else Self(n-1)*Self(n-2)+1: n in [1..20]]; // Vincenzo Librandi, Nov 14 2011
    
  • Mathematica
    a[0] = a[1] = 0; a[n_] := a[n - 1]*a[n - 2] + 1; Table[ a[n], {n, 0, 15} ]
    RecurrenceTable[{a[0]==a[1]==0,a[n]==a[n-1]a[n-2]+1},a,{n,20}] (* Harvey P. Dale, Nov 12 2011 *)
  • Maxima
    a(n) := if (n=0 or n=1) then 0 else a(n-1)*a(n-2)+1 $
    makelist(a(n),n,0,18); /* Emanuele Munarini, Mar 24 2017 */

Formula

a(n) is asymptotic to c^(phi^n) where phi = (1 + sqrt(5))/2 and c = A258113 = 1.1130579759029319... - Benoit Cloitre, Sep 26 2003
b(n) = a(n+1) is a divisibility sequence. - Michael Somos, Dec 29 2012

A076949 Decimal expansion of c, the constant such that lim n -> infinity A003095(n)/c^(2^n) = 1.

Original entry on oeis.org

1, 2, 2, 5, 9, 0, 2, 4, 4, 3, 5, 2, 8, 7, 4, 8, 5, 3, 8, 6, 2, 7, 9, 4, 7, 4, 9, 5, 9, 1, 3, 0, 0, 8, 5, 2, 1, 3, 2, 1, 2, 2, 9, 3, 2, 0, 9, 6, 9, 6, 6, 1, 2, 8, 2, 3, 1, 7, 7, 0, 0, 9, 0, 7, 2, 5, 5, 2, 3, 3, 9, 9, 7, 5, 2, 6, 5, 7, 3, 8, 0, 2, 1, 6, 7, 9, 1, 5, 4, 5, 2, 0, 4, 9, 9, 2, 8, 4, 2, 9
Offset: 1

Views

Author

Benoit Cloitre, Nov 27 2002

Keywords

Examples

			1.2259024435287485386279474959130085213212293209696612823177009072552339975...
		

Crossrefs

Programs

  • Magma
    function A003095(n)
      if n eq 0 then return 0;
      else return 1 + A003095(n-1)^2;
      end if; return A003095;
    end function;
    function S(n)
      if n eq 1 then return Log(2)/2;
      else return S(n-1) + Log(1 + 1/A003095(n)^2)/2^n;
      end if; return S;
    end function;
    SetDefaultRealField(RealField(120)); Exp(S(12)/2); // G. C. Greubel, Nov 29 2022
    
  • Mathematica
    A003095[n_]:= A003095[n]= If[n==0, 0, 1 + A003095[n-1]^2];
    S[n_]:= S[n]= If[n==1, Log[2]/2, S[n-1] + Log[1 + 1/A003095[n]^2]/2^n];
    RealDigits[Exp[S[13]/2], 10, 120][[1]] (* G. C. Greubel, Nov 29 2022 *)
  • SageMath
    @CachedFunction
    def A003095(n): return 0 if (n==0) else 1 + A003095(n-1)^2
    @CachedFunction
    def S(n): return log(2)/2 if (n==1) else S(n-1) + log(1 + 1/(A003095(n))^2)/2^n
    numerical_approx( exp(S(12)/2), digits=120) # G. C. Greubel, Nov 29 2022

Formula

Equals sqrt(A077496). - Vaclav Kotesovec, Dec 17 2014

A250309 a(n) = a(n-1)*(1 + a(n-1)/a(n-3)), with a(0) = a(1) = a(2) = 1.

Original entry on oeis.org

1, 1, 1, 2, 6, 42, 924, 143220, 488523420, 258285263294520, 465795819523189050504840, 444125576385425970712647062585372630520, 763680920404535561780141108036287312478667174369871222219397040
Offset: 0

Views

Author

Michael Somos, Jan 16 2015

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,1,1]; [n le 3 select I[n] else Self(n-1)*(1 + Self(n-1)/Self(n-3)): n in [1..15]]; // G. C. Greubel, Aug 03 2018
  • Mathematica
    RecurrenceTable[{a[n]==a[n-1]*(1 + a[n-1]/a[n-3]), a[0]==1, a[1]==1, a[2]==1},a,{n,0,12}] (* Vaclav Kotesovec, Jan 18 2015 *)
  • PARI
    {a(n) = if( n<3, n>=0, a(n-1)*(1 + a(n-1)/a(n-3)))};
    

Formula

0 = a(n)*(a(n+2) - a(n+3)) + a(n+2)*a(n+2) for all n>=0.
A007660(n+1) = a(n)/a(n-1).
a(n) ~ b * f^(d^n), where b = 0.270887790039424376..., f = c^(2+sqrt(5)) = 1.574173161904651669837597516422779594... and d = (1+sqrt(5))/2. For the constant c = A258113 = 1.11305797590293193285359770716758491... see A007660. - Vaclav Kotesovec, Jan 18 2015

A258112 Decimal expansion of a constant related to A001056.

Original entry on oeis.org

1, 7, 9, 7, 8, 7, 8, 4, 9, 0, 0, 0, 9, 1, 6, 0, 4, 8, 1, 3, 5, 5, 9, 5, 0, 8, 8, 3, 7, 0, 3, 1, 3, 5, 2, 1, 6, 1, 7, 9, 3, 6, 6, 5, 2, 6, 5, 0, 1, 9, 5, 2, 5, 3, 6, 8, 5, 5, 2, 3, 6, 2, 5, 4, 2, 7, 4, 5, 5, 8, 4, 1, 3, 2, 4, 6, 3, 6, 0, 7, 4, 1, 7, 3, 9, 2, 7, 8, 8, 0, 5, 6, 9, 3, 2, 4, 0, 9, 5, 6, 6, 8, 5, 9, 9
Offset: 1

Views

Author

Vaclav Kotesovec, May 20 2015

Keywords

Examples

			1.7978784900091604813559508837031352161793665265019525368552362542745...
		

Crossrefs

Programs

  • Mathematica
    A001056 = RecurrenceTable[{a[0]==1, a[1]==N[3, 200], a[n] == a[n-1]*a[n-2]+1}, a[n], {n, 1, 30}]; Do[Print[N[Exp[c2]/.Solve[Table[Log[A001056[[n]]] == c1*((1-Sqrt[5])/2)^n + c2*((1+Sqrt[5])/2)^n, {n, k, k+1}]], 120][[1]]], {k, Length[A001056]-2, Length[A001056]-1}];

Formula

Equals limit n->infinity (A001056(n))^((2/(1+sqrt(5)))^n).
Showing 1-4 of 4 results.