cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A076949 Decimal expansion of c, the constant such that lim n -> infinity A003095(n)/c^(2^n) = 1.

Original entry on oeis.org

1, 2, 2, 5, 9, 0, 2, 4, 4, 3, 5, 2, 8, 7, 4, 8, 5, 3, 8, 6, 2, 7, 9, 4, 7, 4, 9, 5, 9, 1, 3, 0, 0, 8, 5, 2, 1, 3, 2, 1, 2, 2, 9, 3, 2, 0, 9, 6, 9, 6, 6, 1, 2, 8, 2, 3, 1, 7, 7, 0, 0, 9, 0, 7, 2, 5, 5, 2, 3, 3, 9, 9, 7, 5, 2, 6, 5, 7, 3, 8, 0, 2, 1, 6, 7, 9, 1, 5, 4, 5, 2, 0, 4, 9, 9, 2, 8, 4, 2, 9
Offset: 1

Views

Author

Benoit Cloitre, Nov 27 2002

Keywords

Examples

			1.2259024435287485386279474959130085213212293209696612823177009072552339975...
		

Crossrefs

Programs

  • Magma
    function A003095(n)
      if n eq 0 then return 0;
      else return 1 + A003095(n-1)^2;
      end if; return A003095;
    end function;
    function S(n)
      if n eq 1 then return Log(2)/2;
      else return S(n-1) + Log(1 + 1/A003095(n)^2)/2^n;
      end if; return S;
    end function;
    SetDefaultRealField(RealField(120)); Exp(S(12)/2); // G. C. Greubel, Nov 29 2022
    
  • Mathematica
    A003095[n_]:= A003095[n]= If[n==0, 0, 1 + A003095[n-1]^2];
    S[n_]:= S[n]= If[n==1, Log[2]/2, S[n-1] + Log[1 + 1/A003095[n]^2]/2^n];
    RealDigits[Exp[S[13]/2], 10, 120][[1]] (* G. C. Greubel, Nov 29 2022 *)
  • SageMath
    @CachedFunction
    def A003095(n): return 0 if (n==0) else 1 + A003095(n-1)^2
    @CachedFunction
    def S(n): return log(2)/2 if (n==1) else S(n-1) + log(1 + 1/(A003095(n))^2)/2^n
    numerical_approx( exp(S(12)/2), digits=120) # G. C. Greubel, Nov 29 2022

Formula

Equals sqrt(A077496). - Vaclav Kotesovec, Dec 17 2014

A258113 Decimal expansion of a constant related to A007660.

Original entry on oeis.org

1, 1, 1, 3, 0, 5, 7, 9, 7, 5, 9, 0, 2, 9, 3, 1, 9, 3, 2, 8, 5, 3, 5, 9, 7, 7, 0, 7, 1, 6, 7, 5, 8, 4, 9, 1, 9, 0, 6, 6, 0, 0, 1, 8, 1, 5, 1, 0, 1, 8, 6, 5, 2, 7, 2, 0, 1, 4, 3, 7, 9, 7, 2, 4, 2, 0, 6, 9, 2, 7, 7, 1, 7, 2, 9, 7, 9, 8, 8, 2, 5, 9, 3, 8, 1, 6, 0, 9, 3, 6, 1, 4, 5, 4, 4, 5, 9, 4, 3, 5, 2, 2, 3, 4, 5
Offset: 1

Views

Author

Vaclav Kotesovec, May 20 2015

Keywords

Examples

			1.1130579759029319328535977071675849190660018151018652720143797242069...
		

Crossrefs

Programs

  • Mathematica
    A007660 = RecurrenceTable[{a[1]==0, a[2]==N[1,200], a[n]==a[n-1]*a[n-2]+1},a[n],{n,1,30}]; Do[Print[N[Exp[c2]/.Solve[Table[Log[A007660[[n]]]==c1*((1-Sqrt[5])/2)^n + c2*((1+Sqrt[5])/2)^n, {n,k,k+1}]], 120][[1]]],{k, Length[A007660]-2, Length[A007660]-1}];

Formula

Equals limit n->infinity (A007660(n))^((2/(1+sqrt(5)))^n).

A001056 a(n) = a(n-1)*a(n-2) + 1, a(0) = 1, a(1) = 3.

Original entry on oeis.org

1, 3, 4, 13, 53, 690, 36571, 25233991, 922832284862, 23286741570717144243, 21489756930695820973683319349467, 500426416062641238759467086706254193219790764168482, 10754042042885415070816603338436200915110904821126871858491675028294447933424899095
Offset: 0

Views

Author

Keywords

References

  • Archimedeans Problems Drive, Eureka, 19 (1957), 13.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001622 (phi), A258112.

Programs

  • GAP
    a:=[1,3];; for n in [3..13] do a[n]:=a[n-1]*a[n-2]+1; od; a; # G. C. Greubel, Sep 19 2019
  • Haskell
    a001056 n = a001056_list !! n
    a001056_list = 1 : 3 : (map (+ 1 ) $
                   zipWith (*) a001056_list $ tail a001056_list)
    -- Reinhard Zumkeller, Aug 15 2012
    
  • Magma
    I:=[1,3]; [n le 2 select I[n] else Self(n-1)*Self(n-2) + 1: n in [1..13]]; // G. C. Greubel, Sep 19 2019
    
  • Maple
    a:= proc (n) option remember;
    if n=0 then 1
    elif n=1 then 3
    else a(n-1)*a(n-2) + 1
    end if
    end proc;
    seq(a(n), n = 0..13); # G. C. Greubel, Sep 19 2019
  • Mathematica
    RecurrenceTable[{a[0]==1,a[1]==3,a[n]==a[n-1]*a[n-2]+1},a,{n,0,14}] (* Harvey P. Dale, Jul 17 2011 *)
    t = {1, 3}; Do[AppendTo[t, t[[-1]] * t[[-2]] + 1], {n, 2, 14}] (* T. D. Noe, Jun 25 2012 *)
  • PARI
    m=13; v=concat([1,3], vector(m-2)); for(n=3, m, v[n]=v[n-1]*v[n-2] +1 ); v \\ G. C. Greubel, Sep 19 2019
    
  • Sage
    def a(n):
        if (n==0): return 1
        elif (n==1): return 3
        else: return a(n-1)*a(n-2) + 1
    [a(n) for n in (0..13)] # G. C. Greubel, Sep 19 2019
    

Formula

a(n) ~ c^(phi^n), where c = A258112 = 1.7978784900091604813559508837..., phi = (1+sqrt(5))/2 = A001622. - Vaclav Kotesovec, Dec 17 2014
Showing 1-3 of 3 results.