cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A055937 a(n) = a(n-1) * a(n-2) - 1.

Original entry on oeis.org

2, 2, 3, 5, 14, 69, 965, 66584, 64253559, 4278258972455, 274893365303916717344, 1176065006579831683931038116759519, 323292467474902888912311701915651931811127805144397535
Offset: 1

Views

Author

Robert G. Wilson v, Jul 05 2000

Keywords

Crossrefs

A152446 uses largest prime < a(n-1)*a(n-2) instead of subtracting 1. - Joshua D. Olson, Sep 29 2015

Programs

  • Magma
    I:=[2,2]; [n le 2 select I[n] else Self(n-1)*Self(n-2)-1: n in [1..15]]; // Vincenzo Librandi, Sep 30 2015
    
  • Mathematica
    RecurrenceTable[{a[1]==a[2]==2, a[n]==a[n-1]*a[n-2] -1}, a, {n, 15}] (* Vincenzo Librandi, Sep 30 2015 *)
    nxt[{a_,b_}]:={b,a*b-1}; NestList[nxt,{2,2},15][[All,1]] (* Harvey P. Dale, Dec 05 2020 *)
  • PARI
    a(n) = if(n<3, 2, a(n-1)*a(n-2)-1);
    vector(15, n, a(n)) \\ Altug Alkan, Sep 30 2015
    
  • Sage
    @cached_function
    def a(n):
        if n == 1 or n == 2:
            return 2
        else:
            return a(n - 1) * a(n - 2) - 1
    [a(n) for n in range(1, 16)]  # G. C. Greubel, Jun 07 2019

Formula

a(n) ~ c^(phi^n), where c = 1.26679081808631741720378389711... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jun 15 2019

A178210 Numbers that are not the sum of squares of distinct composite numbers.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76
Offset: 1

Views

Author

Keywords

Crossrefs

Showing 1-2 of 2 results.