A250486 A(n,k) is the n^k-th Fibonacci number; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 3, 2, 1, 0, 1, 21, 34, 3, 1, 0, 1, 987, 196418, 987, 5, 1, 0, 1, 2178309, 37889062373143906, 10610209857723, 75025, 8, 1
Offset: 0
Examples
Square array A(n,k) begins: 1, 0, 0, 0, 0, 0, 0, 0, ... 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 3, 21, 987, 2178309, ... 1, 2, 34, 196418, 37889062373143906, ... 1, 3, 987, 10610209857723, ... 1, 5, 75025, 59425114757512643212875125, ... 1, 8, 14930352, ... 1, 13, 7778742049, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..10, flattened
- Wikipedia, Fibonacci number
Crossrefs
Programs
-
Maple
A:= (n, k)-> (<<0|1>, <1|1>>^(n^k))[1, 2]: seq(seq(A(n, d-n), n=0..d), d=0..8);
-
Mathematica
A[n_, k_] := MatrixPower[{{0, 1}, {1, 1}}, n^k][[1, 2]]; A[0, 0] = 1; Table[A[n, d-n], {d, 0, 8}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 28 2019, from Maple *)
Formula
A(n,k) = [0, 1; 1, 1]^(n^k)[1,2].