cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A250489 a(n) = Fibonacci(10^n).

Original entry on oeis.org

1, 55, 354224848179261915075
Offset: 0

Views

Author

Alois P. Heinz, Nov 24 2014

Keywords

Comments

The next term has 209 digits. - Harvey P. Dale, May 28 2018

Crossrefs

Row n=10 of A250486.
Cf. A000045.

Programs

  • Maple
    a:= n-> (<<0|1>, <1|1>>^(10^n))[1, 2]:
    seq(a(n), n=0..3);

Formula

a(n) = A000045(10^n).

A250487 a(n) = Fibonacci(8^n).

Original entry on oeis.org

1, 21, 10610209857723
Offset: 0

Views

Author

Alois P. Heinz, Nov 24 2014

Keywords

Crossrefs

Row n=8 of A250486.
Cf. A000045.

Programs

  • Maple
    a:= n-> (<<0|1>, <1|1>>^(8^n))[1, 2]:
    seq(a(n), n=0..4);

Formula

a(n) = A000045(8^n).

A250488 a(n) = Fibonacci(9^n).

Original entry on oeis.org

1, 34, 37889062373143906
Offset: 0

Views

Author

Alois P. Heinz, Nov 24 2014

Keywords

Crossrefs

Row n = 9 of A250486. Bisection of A045529.
Cf. A000045.

Programs

  • Maple
    a:= n-> (<<0|1>, <1|1>>^(9^n))[1, 2]:
    seq(a(n), n=0..4);

Formula

a(n) = A000045(9^n).
From Peter Bala, Nov 25 2022: (Start)
a(n+1) = 625*a(n)^9 - 1125*a(n)^7 + 675*a(n)^5 - 150*a(n)^3 + 9*a(n) with a(0) = 1.
a(n) == 7 (mod 9) for n >= 1.
a(n+1) == a(n) mod (9^n).
5*a(n)^2 == 2 (mod 9^n).
In the ring of 9-adic integers, the sequence {a(n)} is a Cauchy sequence. It converges to a 9-adic root of the quadratic equation 5*x^2 - 2 = 0 (the 9-adic Cauchy sequence {Fibonacci(3*9^n)} converges to the other root). (End)

A250490 (n^4)-th Fibonacci number.

Original entry on oeis.org

0, 1, 987, 37889062373143906, 141693817714056513234709965875411919657707794958199867
Offset: 0

Views

Author

Alois P. Heinz, Nov 24 2014

Keywords

Crossrefs

Column k = 4 of A250486.
Cf. A000045.

Programs

  • Maple
    a:= n-> (<<0|1>, <1|1>>^(n^4))[1, 2]:
    seq(a(n), n=0..5);
  • Mathematica
    Fibonacci[Range[0, 5]^4] (* Alonso del Arte, Aug 22 2017 *)
  • PARI
    a(n) = fibonacci(n^4) \\ Felix Fröhlich, Aug 22 2017

Formula

a(n) = A000045(n^4).

A250491 (n^5)-th Fibonacci number.

Original entry on oeis.org

0, 1, 2178309, 271964099255182923543922814194423915162591622175362
Offset: 0

Views

Author

Alois P. Heinz, Nov 24 2014

Keywords

Comments

The next term has 214 digits. - Harvey P. Dale, Apr 22 2019

Crossrefs

Column k=5 of A250486.
Cf. A000045.

Programs

  • Maple
    a:= n-> (<<0|1>, <1|1>>^(n^5))[1, 2]:
    seq(a(n), n=0..5);
  • Mathematica
    Fibonacci[Range[0,4]^5] (* Harvey P. Dale, Mar 27 2025 *)

Formula

a(n) = A000045(n^5).

A250492 (n^6)-th Fibonacci number.

Original entry on oeis.org

0, 1, 10610209857723
Offset: 0

Views

Author

Alois P. Heinz, Nov 24 2014

Keywords

Comments

The next term (a(3)) has 153 digits. - Harvey P. Dale, Jan 26 2025

Crossrefs

Column k=6 of A250486.
Cf. A000045.

Programs

  • Maple
    a:= n-> (<<0|1>, <1|1>>^(n^6))[1, 2]:
    seq(a(n), n=0..4);
  • Mathematica
    Table[Fibonacci[n^6],{n,0,3}] (* Harvey P. Dale, Jan 26 2025 *)

Formula

a(n) = A000045(n^6).

A250493 (n^7)-th Fibonacci number.

Original entry on oeis.org

0, 1, 251728825683549488150424261
Offset: 0

Views

Author

Alois P. Heinz, Nov 24 2014

Keywords

Crossrefs

Column k=7 of A250486.
Cf. A000045.

Programs

  • Magma
    [Fibonacci(n^7): n in [0..4]]; // Vincenzo Librandi, Nov 24 2014
  • Maple
    a:= n-> (<<0|1>, <1|1>>^(n^7))[1, 2]:
    seq(a(n), n=0..3);
  • Mathematica
    Table[Fibonacci[n^7], {n, 0, 5}] (* Vincenzo Librandi, Nov 24 2014 *)

Formula

a(n) = A000045(n^7).

A250495 The n^n-th Fibonacci number.

Original entry on oeis.org

1, 1, 3, 196418, 141693817714056513234709965875411919657707794958199867
Offset: 0

Views

Author

Alois P. Heinz, Nov 24 2014

Keywords

Comments

The next term (a(5)) has 653 digits. - Harvey P. Dale, Nov 29 2017

Crossrefs

Programs

  • Maple
    a:= n-> (<<0|1>, <1|1>>^(n^n))[1, 2]:
    seq(a(n), n=0..5);
  • Mathematica
    Table[Fibonacci[n^n],{n,0, 5}] (* Harvey P. Dale, Nov 29 2017 *)

Formula

a(n) = [0, 1; 1, 1]^(n^n)[1,2].
a(n) = A000045(n^n) = A250486(n,n).
a(n) = A000045(A000312(n)).

A250494 (n^8)-th Fibonacci number.

Original entry on oeis.org

0, 1, 141693817714056513234709965875411919657707794958199867
Offset: 0

Views

Author

Alois P. Heinz, Nov 24 2014

Keywords

Crossrefs

Column k=8 of A250486.
Cf. A000045.

Programs

  • Maple
    a:= n-> (<<0|1>, <1|1>>^(n^8))[1, 2]:
    seq(a(n), n=0..3);

Formula

a(n) = A000045(n^8).
Showing 1-9 of 9 results.