cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A054783 (n^2)-th Fibonacci number.

Original entry on oeis.org

0, 1, 3, 34, 987, 75025, 14930352, 7778742049, 10610209857723, 37889062373143906, 354224848179261915075, 8670007398507948658051921, 555565404224292694404015791808, 93202207781383214849429075266681969, 40934782466626840596168752972961528246147
Offset: 0

Views

Author

Jeff Burch, May 22 2000

Keywords

Comments

Crossrefs

Cf. (n^k)-th Fibonacci number: A000045 (k=1), this sequence (k=2), A182149 (k=3), A250490 (k=4), A250491 (k=5), A250492 (k=6), A250493 (k=7), A250494 (k=8).
Cf. A081667.
Cf. A341617 shows a similar property for the Stirling numbers of the second kind.

Programs

Formula

a(n) = Sum_{k=1..T(n-1)+1} binomial(T(n-1), k-1)*F(n-1+k), where F(n) is A000045 and T(n) is A000217. - Tony Foster III, Sep 03 2018

A250486 A(n,k) is the n^k-th Fibonacci number; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 3, 2, 1, 0, 1, 21, 34, 3, 1, 0, 1, 987, 196418, 987, 5, 1, 0, 1, 2178309, 37889062373143906, 10610209857723, 75025, 8, 1
Offset: 0

Views

Author

Alois P. Heinz, Nov 24 2014

Keywords

Examples

			Square array A(n,k) begins:
  1,  0,  0,      0,       0,    0,  0,  0,   ...
  1,  1,  1,      1,       1,    1,  1,  1,   ...
  1,  1,  3,      21,      987,  2178309,     ...
  1,  2,  34,     196418,  37889062373143906, ...
  1,  3,  987,    10610209857723,             ...
  1,  5,  75025,  59425114757512643212875125, ...
  1,  8,  14930352,                           ...
  1,  13, 7778742049,                         ...
		

Crossrefs

Main diagonal gives A250495.
Cf. A000045.

Programs

  • Maple
    A:= (n, k)-> (<<0|1>, <1|1>>^(n^k))[1, 2]:
    seq(seq(A(n, d-n), n=0..d), d=0..8);
  • Mathematica
    A[n_, k_] := MatrixPower[{{0, 1}, {1, 1}}, n^k][[1, 2]]; A[0, 0] = 1;
    Table[A[n, d-n], {d, 0, 8}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 28 2019, from Maple *)

Formula

A(n,k) = [0, 1; 1, 1]^(n^k)[1,2].
Showing 1-2 of 2 results.