cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A058635 a(n) = Fibonacci(2^n).

Original entry on oeis.org

1, 1, 3, 21, 987, 2178309, 10610209857723, 251728825683549488150424261, 141693817714056513234709965875411919657707794958199867
Offset: 0

Views

Author

Robert G. Wilson v, Jan 16 2001

Keywords

Comments

The next term has 107 digits.
From Peter Bala, Oct 30 2013: (Start)
Apart from giving the numerators in the Engel series representation of (1/2)*(7 - sqrt(5)), as noted below by Cloitre, this sequence (excluding the initial term) is also a generalized Pierce expansion defined as follows. Let x and b be positive real numbers. We define a Pierce expansion of x to the base b to be a nondecreasing sequence [a(1), a(2), a(3), ...] of positive integers such that we have an alternating series representation x = b/a(1) - b^2/(a(1)*a(2)) + b^3/(a(1)*a(2)*a(3)) - ....
The present sequence, apart from the initial term, is a Pierce expansion of the real number x := (1/2)*(3 - sqrt(5)) to the base b := 1/sqrt(5). The associated series representation begins (1/2)*(3 - sqrt(5)) = b/1 - b^2/(1*3) + b^3/(1*3*21) - b^4/(1*3*21*987) + .... Cf. A071579 and A230338.
More generally, for n >= 0, the sequence [a(n+1), a(n+2), a(n+3), ...] gives a Pierce expansion of ( (1/2)*(3 - sqrt(5)) )^(2^n) to the base b = 1/sqrt(5). Some examples are given below. (End)
a(n) is the denominator of the n-th iterate when Newton's method is applied to the function x^2 - x - 1 with initial guess x = 1. The n-th iterate is A192222(n)/a(n). - Jason Zimba, Jan 20 2023

Examples

			Let b = 1/sqrt(5) and x = (1/2)*(3 - sqrt(5)). We have the following Pierce expansions to base b:
x = b/1 - b^2/(1*3) + b^3/(1*3*21) - b^4/(1*3*21*987) + ....
x^2 = b/3 - b^2/(3*21) + b^3/(3*21*987) - b^4/(3*21*987*2178309) + ....
x^4 = b/21 - b^2/(21*987) + b^3/(21*987*2178309) - ....
x^8 = b/987 - b^2/(987*2178309) + .... - _Peter Bala_, Oct 30 2013
		

References

  • Jay Kappraff, Beyond Measure, A Guided Tour Through Nature, Myth and Number, World Scientific, 2002, p. 446.

Crossrefs

Programs

  • Magma
    [Fibonacci(2^n): n in [0..10]]; // Vincenzo Librandi, Mar 25 2014
    
  • Maple
    a:= n-> (<<0|1>, <1|1>>^(2^n))[1,2]:
    seq(a(n), n=0..10);  # Alois P. Heinz, Nov 21 2014
  • Mathematica
    Table[ Fibonacci[ 2^n ], {n, 0, 9} ]
    G = (1 + Sqrt[5])/2; Table[Expand[(G^(2^n) - (1 - G)^(2^n))/Sqrt[5]], {n, 1, 7}] (* Artur Jasinski, Oct 05 2008 *)
    Table[Round[(4/5)^(1/2)*Cosh[2^n*ArcCosh[((5/4)^(1/2))]]], {n, 1, 10}] (* Artur Jasinski, Oct 05 2008 *)
  • PARI
    a(n)=fibonacci(2^n) \\ Charles R Greathouse IV, Oct 03 2016

Formula

a(n) = a(n-1)*A001566(n-2). - Joe Keane (jgk(AT)jgk.org), May 31 2002
Sum_{n>=0} 1/a(n) = (1/2)*(7-sqrt(5)). - Benoit Cloitre, Jan 26 2003
1/phi^2 = (0.6180339...)^2 = 2/(3+sqrt(5)) = Sum_{n>=2} 1/a(n) = 1/3 + 1/21 + 1/987 + 1/2178309 + ... - Gary W. Adamson, Jun 12 2003
From Artur Jasinski, Oct 05 2008: (Start)
a(n) = (G^(2^n) - (1 - G)^(2^n))/sqrt(5) where G = GoldenRatio = (1 + sqrt(5))/2.
a(n) = sqrt(4/5)*cosh((2^n)*arccosh(sqrt(5/4))). (End)
a(n) = (a(n-1)^3 / a(n-2)^2 + 5 * a(n-1) * a(n-2)^2) / 2, for n > 1. - Lee A. Newberg, Jul 20 2010
Recurrence equations from Peter Bala, Oct 30 2013: (Start)
a(n)/a(n-1) = (a(n-1)/a(n-2))^2 - 2 for n >= 3.
a(n)/a(n-1) = 5*a(n-2)^2 + 2 for n >= 3.
a(n) = a(n-1)*sqrt(5*a(n-1)^2 + 4) for n >= 2. (End)
0 = a(n)^2 * ( a(n+3) - 2*a(n+2) ) - a(n+1)*a(n+2) * ( a(n+2) - 2*a(n+1)) if n > 0. - Michael Somos, Mar 24 2014
From Amiram Eldar, Dec 02 2021: (Start)
a(n) = A000045(A000079(n)).
Limit_{n->oo} sqrt(a(1)^2 + sqrt(a(2)^2 + sqrt(a(3)^2 + ... + sqrt(a(n))))) = 3 (Ohtsuka, 2015). (End)
a(n) = Product_{k=0..n-1} L(2^k), for n >= 1, where L(k) is the k-th Lucas number (A000032). - Amiram Eldar, Mar 30 2023

A250486 A(n,k) is the n^k-th Fibonacci number; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 3, 2, 1, 0, 1, 21, 34, 3, 1, 0, 1, 987, 196418, 987, 5, 1, 0, 1, 2178309, 37889062373143906, 10610209857723, 75025, 8, 1
Offset: 0

Views

Author

Alois P. Heinz, Nov 24 2014

Keywords

Examples

			Square array A(n,k) begins:
  1,  0,  0,      0,       0,    0,  0,  0,   ...
  1,  1,  1,      1,       1,    1,  1,  1,   ...
  1,  1,  3,      21,      987,  2178309,     ...
  1,  2,  34,     196418,  37889062373143906, ...
  1,  3,  987,    10610209857723,             ...
  1,  5,  75025,  59425114757512643212875125, ...
  1,  8,  14930352,                           ...
  1,  13, 7778742049,                         ...
		

Crossrefs

Main diagonal gives A250495.
Cf. A000045.

Programs

  • Maple
    A:= (n, k)-> (<<0|1>, <1|1>>^(n^k))[1, 2]:
    seq(seq(A(n, d-n), n=0..d), d=0..8);
  • Mathematica
    A[n_, k_] := MatrixPower[{{0, 1}, {1, 1}}, n^k][[1, 2]]; A[0, 0] = 1;
    Table[A[n, d-n], {d, 0, 8}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 28 2019, from Maple *)

Formula

A(n,k) = [0, 1; 1, 1]^(n^k)[1,2].

A081667 a(n) = Fibonacci(binomial(n+2,2)).

Original entry on oeis.org

1, 2, 8, 55, 610, 10946, 317811, 14930352, 1134903170, 139583862445, 27777890035288, 8944394323791464, 4660046610375530309, 3928413764606871165730, 5358359254990966640871840, 11825896447871834976429068427, 42230279526998466217810220532898
Offset: 0

Views

Author

Paul Barry, Mar 26 2003

Keywords

Comments

Diagonal of Fibonacci-Pascal triangle A045995.

Crossrefs

Programs

  • Maple
    with(combinat): seq(fibonacci((n^2-n)/2),n=2..16); # Zerinvary Lajos, May 18 2008
    # second Maple program:
    a:= n-> (<<0|1>, <1|1>>^((n+1)*(n+2)/2))[1, 2]:
    seq(a(n), n=0..20);  # Alois P. Heinz, Jan 20 2017
  • Mathematica
    Table[Fibonacci[Binomial[n+2,2]],{n,0,20}] (* Harvey P. Dale, Dec 03 2014 *)
  • Sage
    [fibonacci(binomial(n,2)) for n in range(2, 17)] # Zerinvary Lajos, Nov 30 2009

Formula

a(n) = sqrt(5)2^(-n(n+3)/2)(sqrt(5)+1)^((n^2+3n+2)/2)/10 + sqrt(5)2^(-n(n + 3)/2)(sqrt(5)-1)^((n^2+3n+ 2)/2)(-1)^(n(n+3)/2)/10.
a(n) = A045995(n+2,2).
a(n) = A000045(A000217(n+1)). - Peter M. Chema, Sep 18 2016. See the name.

Extensions

Name edited by Michel Marcus, Sep 25 2016

A102310 Square array read by antidiagonals: Fibonacci(k*n).

Original entry on oeis.org

1, 1, 1, 2, 3, 2, 3, 8, 8, 3, 5, 21, 34, 21, 5, 8, 55, 144, 144, 55, 8, 13, 144, 610, 987, 610, 144, 13, 21, 377, 2584, 6765, 6765, 2584, 377, 21, 34, 987, 10946, 46368, 75025, 46368, 10946, 987, 34, 55, 2584, 46368, 317811, 832040, 832040, 317811, 46368, 2584, 55
Offset: 1

Views

Author

Ralf Stephan, Jan 06 2005

Keywords

Examples

			1,  1,   2,    3,     5, ...
1,  3,   8,   21,    55, ...
2,  8,  34,  144,   610, ...
3, 21, 144,  987,  6765, ...
5, 55, 610, 6765, 75025, ...
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. 2nd Edition. Addison-Wesley, Reading, MA, 1994, p. 294.

Crossrefs

Equals A000045(A003991(k, n)).
Columns include A000045, A001906, A014445, A033888, A102312.
Main diagonal is in A054783. Antidiagonal sums are in A102311.

Programs

  • Magma
    /* As triangle */ [[Fibonacci(k*(n-k+1)): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Jul 04 2019
  • Mathematica
    Table[Fibonacci[k*(n-k+1)], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 10 2017 *)
  • Sage
    F = fibonacci # A000045
    def A(n, k):
        return F((n-1)*k)*F(k+1) + F((n-1)*k - 1)*F(k)
    [A(n, k) for d in (1..10) for n, k in zip((d..1, step=-1), (1..d))] # Freddy Barrera, Jun 24 2019
    

Formula

For prime p, the formula holds: Fibonacci(k*p) = Fibonacci(p) * Sum_{i=0..floor((k-1)/2)} C(k-i-1, i)*(-1)^(i*p+i)*Lucas(p)^(k-2i-1).
A(n, k) = F((n-1)*k)*F(k+1) + F((n-1)*k-1)*F(k), where F(n) = A000045(n). - Freddy Barrera, Jun 24 2019

A182149 a(n) = Fibonacci(n^3).

Original entry on oeis.org

0, 1, 21, 196418, 10610209857723, 59425114757512643212875125, 619220451666590135228675387863297874269396512, 215414832505658809004682396169711233230800418578767753330908886771798637
Offset: 0

Views

Author

Vincenzo Librandi, Jul 07 2012

Keywords

Crossrefs

Programs

  • Magma
    [Fibonacci(n^3): n in [0..10]];
  • Maple
    a:= n-> (<<0|1>, <1|1>>^(n^3))[1,2]:
    seq(a(n), n=0..8);  # Alois P. Heinz, Aug 09 2018
  • Mathematica
    Table[Fibonacci[n^3], {n, 20}]

Formula

a(n) = A000045(A000578(n)).

A207972 Expansion of g.f.: exp( Sum_{n>=1} 5*Fibonacci(n^2) * x^n/n ).

Original entry on oeis.org

1, 5, 20, 115, 1665, 82650, 12847310, 5620114060, 6659421195205, 21082748688390045, 177217804775828062850, 3941798437750184226876305, 231505293200405380457355524620, 35848160499603817968830380832049915, 14619744406297572472084577939841875791890
Offset: 0

Views

Author

Paul D. Hanna, Feb 22 2012

Keywords

Comments

Moss and Ward prove that this is an integral sequence. - Peter Bala, Nov 28 2022
Let A(x) be the g.f. for this sequence. Note that the expansion of A(x)^(1/5) = exp( Sum_{n>=1} Fibonacci(n^2) * x^n/n ) does not have integer coefficients.

Examples

			G.f.: A(x) = 1 + 5*x + 20*x^2 + 115*x^3 + 1665*x^4 + 82650*x^5 + ...
such that
log(A(x))/5 = x + 3*x^2/2 + 34*x^3/3 + 987*x^4/4 + 75025*x^5/5 + 14930352*x^6/6 + 7778742049*x^7/7 + ... + Fibonacci(n^2)*x^n/n + ...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(k=1,n,5*fibonacci(k^2)*x^k/k)+x*O(x^n)),n)}
    for(n=0,16,print1(a(n),", "))

A204060 G.f.: Sum_{n>=1} Fibonacci(n^2)*x^(n^2).

Original entry on oeis.org

1, 0, 0, 3, 0, 0, 0, 0, 34, 0, 0, 0, 0, 0, 0, 987, 0, 0, 0, 0, 0, 0, 0, 0, 75025, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14930352, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7778742049, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10610209857723, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 37889062373143906
Offset: 1

Views

Author

Paul D. Hanna, Jan 12 2012

Keywords

Comments

Compare g.f. to the Lambert series identity: Sum_{n>=1} lambda(n)*x^n/(1-x^n) = Sum_{n>=1} x^(n^2).
Liouville's function lambda(n) = (-1)^k, where k is number of primes dividing n (counted with multiplicity).

Examples

			G.f.: A(x) = x + 3*x^4 + 34*x^9 + 987*x^16 + 75025*x^25 + 14930352*x^36 +...
where A(x) = x/(1-x-x^2) + (-1)*1*x^2/(1-3*x^2+x^4) + (-1)*2*x^3/(1-4*x^3-x^6) + (+1)*3*x^4/(1-7*x^4+x^8) + (-1)*5*x^5/(1-11*x^5-x^10) + (+1)*8*x^6/(1-18*x^6+x^12) +...+ lambda(n)*fibonacci(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) +...
		

Crossrefs

Cf. A203847, A054783, A008836 (lambda), A000204 (Lucas), A000045.
Cf. A209614 (variant).

Programs

  • PARI
    {a(n)=issquare(n)*fibonacci(n)}
    
  • PARI
    {lambda(n)=local(F=factor(n));(-1)^sum(i=1,matsize(F)[1],F[i,2])}
    {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
    {a(n)=polcoeff(sum(m=1,n,lambda(m)*fibonacci(m)*x^m/(1-Lucas(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))),n)}

Formula

G.f.: Sum_{n>=1} lambda(n)*Fibonacci(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)), where lambda(n) = A008836(n) and Lucas(n) = A000204(n).

A204327 a(n) = Pell(n^2).

Original entry on oeis.org

1, 12, 985, 470832, 1311738121, 21300003689580, 2015874949414289041, 1111984844349868137938112, 3575077977948634627394046618865, 66992092050551637663438906713182313772, 7316660981177400006023755031791634132229378601
Offset: 1

Views

Author

Paul D. Hanna, Jan 14 2012

Keywords

Examples

			G.f.: A(x) = x + 12*x^2 + 985*x^3 + 470832*x^4 + 1311738121*x^5 +...
		

Crossrefs

Programs

  • PARI
    {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)), n)}
    {a(n)=Pell(n^2)}

Formula

a(n) = ( (1+sqrt(2))^(n^2) - (1-sqrt(2))^(n^2) ) / (2*sqrt(2)).

A211488 a(n) = Fibonacci(n^2) - Fibonacci(n).

Original entry on oeis.org

0, 2, 32, 984, 75020, 14930344, 7778742036, 10610209857702, 37889062373143872, 354224848179261915020, 8670007398507948658051832, 555565404224292694404015791664, 93202207781383214849429075266681736, 40934782466626840596168752972961528245770
Offset: 1

Views

Author

Vincenzo Librandi, Jul 09 2012

Keywords

Crossrefs

Programs

  • Magma
    [Fibonacci(n^2) - Fibonacci(n): n in [1..15]];
  • Mathematica
    Table[Fibonacci[n^2]-Fibonacci[n],{n,20}]

Formula

a(n) = A054783(n) - A000045(n). - Michel Marcus, May 02 2025

A225686 a(n) = Fibonacci(2*n^2), a "Somos-like" sequence.

Original entry on oeis.org

1, 21, 2584, 2178309, 12586269025, 498454011879264, 135301852344706746049, 251728825683549488150424261, 3210056809456107725247980776292056, 280571172992510140037611932413038677189525
Offset: 1

Views

Author

N. J. A. Sloane, May 23 2013

Keywords

Crossrefs

Programs

  • Magma
    [Fibonacci(2*n^2): n in [1..10]]; // G. C. Greubel, Aug 09 2018
  • Maple
    A225686 := proc(n)
        if n <= 5 then
            op(n,[1, 21, 2584, 2178309, 12586269025]) ;
        else
            ( 2303*procname(n - 4)*procname(n - 3)*procname(n - 1)
            + 2255*procname(n - 3)^2*procname(n - 2)
            + 329*procname(n - 4)*procname(n - 1)^2
            - 15792*procname(n - 4)*procname(n - 2)^2
            + 329*procname(n - 4)*procname(n - 3)^2
            - 2303*procname(n - 4)^2*procname(n - 2)
            + 441*procname(n - 2)
            - procname(n-2)^3
            -2961*procname(n-4)
            - procname(n-5)*procname(n-2)*procname(n-1)
            + 329*procname(n-5)*procname(n-3)*procname(n-2) )
            / 48/procname(n-4)/procname(n-2) ;
        end if;
    end proc: # R. J. Mathar, Jul 09 2013
    # second Maple program:
    a:= n-> (<<0|1>, <1|1>>^(2*n^2))[1,2]:
    seq(a(n), n=1..12);  # Alois P. Heinz, Aug 09 2018
  • Mathematica
    a[ n_] := Fibonacci[2 n^2]; (* Michael Somos, Dec 05 2016 *)
  • PARI
    {a(n) = fibonacci(2 * n^2)}; /* Michael Somos, Dec 05 2016 */
    

Formula

a(1) = 1, a(2) = 21, a(3) = 2584, a(4) = 2178309, a(5) = 12586269025, and for n>=6, a(n) = ( 2303a(n - 4)a(n - 3)a(n - 1) + 2255a(n - 3)^2 a(n - 2) + 329a(n - 4)a(n - 1)^2 - 15792a(n - 4)a(n - 2)^2 + 329a(n - 4)a(n - 3)^2 - 2303a(n - 4)^2 a(n - 2) + 441a(n - 2) - a(n-2)^3-2961a(n-4) - a(n-5)a(n-2)a(n-1) + 329a(n-5)a(n-3)a(n-2) )/( 48a(n-4)a(n-2) ).
0 = a(n)*(+233805165*a(n+4) - 726110*a(n+6)) + a(n+1)*(-76921899285*a(n+3) + 75284537349*a(n+7)) + a(n+2)*(+11222647920*a(n+2) + 3613692630240*a(n+4) - 1138829425306704*a(n+6) - 34837488*a(n+8)) + a(n+3)*(-527230649330*a(n+3) + 526991761443*a(n+7) + 329*a(n+9)) + a(n+4)*(+516007999155*a(n+4) - 1636636155*a(n+6) - 4976784*a(n+8)) + a(n+6)*(2255*a(n+6)). for all n in Z. - Michael Somos, Dec 05 2016
Showing 1-10 of 10 results.