cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A033192 a(n) = binomial(Fibonacci(n) + 1, 2).

Original entry on oeis.org

0, 1, 1, 3, 6, 15, 36, 91, 231, 595, 1540, 4005, 10440, 27261, 71253, 186355, 487578, 1276003, 3339820, 8742471, 22885995, 59912931, 156848616, 410626153, 1075018896, 2814412825, 7368190921, 19290113571, 50502074766, 132215989335, 346145696820, 906220783315
Offset: 0

Views

Author

Simon P. Norton

Keywords

Comments

a(n) is the sum of n-th row in Wythoff array A003603. [Reinhard Zumkeller, Jan 26 2012]
A subsequence of the triangular numbers A000217. In fact, binomial(F(n)+1,2) = A000217(F(n)). - M. F. Hasler, Jan 27 2012

Crossrefs

Programs

  • Maple
    a:= n-> (f-> f*(f+1)/2)((<<0|1>, <1|1>>^n)[1, 2]):
    seq(a(n), n=0..35);  # Alois P. Heinz, Sep 06 2008
  • Mathematica
    Table[Binomial[Fibonacci[n] + 1, 2], {n, 0, 50}] (* Alonso del Arte, Jan 26 2012 *)
    LinearRecurrence[{3,1,-5,-1,1},{0,1,1,3,6},40] (* Harvey P. Dale, Apr 04 2020 *)
  • PARI
    a(n)=binomial(fibonacci(n)+1,2) \\ Charles R Greathouse IV, Jan 26 2012

Formula

G.f.: x(x^3-x^2-2x+1)/[(1+x)(1-3x+x^2)(1-x-x^2)].
a(n) = ((Fibonacci(n)+Fibonacci(n)^2)/2). - Gary Detlefs, Dec 24 2010
Equals A000217 o A000045. - M. F. Hasler, Jan 27 2012
a(n) = A032441(n) - 1. - Filip Zaludek, Oct 30 2016

A054783 (n^2)-th Fibonacci number.

Original entry on oeis.org

0, 1, 3, 34, 987, 75025, 14930352, 7778742049, 10610209857723, 37889062373143906, 354224848179261915075, 8670007398507948658051921, 555565404224292694404015791808, 93202207781383214849429075266681969, 40934782466626840596168752972961528246147
Offset: 0

Views

Author

Jeff Burch, May 22 2000

Keywords

Comments

Crossrefs

Cf. (n^k)-th Fibonacci number: A000045 (k=1), this sequence (k=2), A182149 (k=3), A250490 (k=4), A250491 (k=5), A250492 (k=6), A250493 (k=7), A250494 (k=8).
Cf. A081667.
Cf. A341617 shows a similar property for the Stirling numbers of the second kind.

Programs

Formula

a(n) = Sum_{k=1..T(n-1)+1} binomial(T(n-1), k-1)*F(n-1+k), where F(n) is A000045 and T(n) is A000217. - Tony Foster III, Sep 03 2018

A045995 Rows of Fibonacci-Pascal triangle.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 8, 3, 1, 1, 5, 55, 55, 5, 1, 1, 8, 610, 6765, 610, 8, 1, 1, 13, 10946, 9227465, 9227465, 10946, 13, 1, 1, 21, 317811, 225851433717, 190392490709135, 225851433717, 317811, 21, 1, 1, 34, 14930352
Offset: 0

Views

Author

Keywords

Examples

			1,
1,  1,
1,  1,      1,
1,  2,      2,            1,
1,  3,      8,            3,               1,
1,  5,     55,           55,               5,            1,
1,  8,    610,         6765,             610,            8,      1,
1, 13,  10946,      9227465,         9227465,        10946,     13,  1,
1, 21, 317811, 225851433717, 190392490709135, 225851433717, 317811, 21, 1,
...
		

Crossrefs

Cf. A000045, A007318, A006449 (row sums), A081667.
Main diagonal gives A281450.

Programs

  • Haskell
    a045995 n k = a045995_tabl !! n !! k
    a045995_row n = a045995_tabl !! n
    a045995_tabl = map (map (a000045 . fromInteger)) a007318_tabl
    -- Reinhard Zumkeller, Dec 29 2011
  • Maple
    A045995 := proc(n,k)
        combinat[fibonacci](binomial(n,k)) ;
    end proc: # R. J. Mathar, Dec 03 2014
  • Mathematica
    Flatten[Table[Fibonacci[Binomial[n,k]],{n,0,10},{k,0,n}]] (* Harvey P. Dale, Dec 31 2013 *)

Formula

Take Pascal triangle (A007318) and replace each i by Fibonacci(i): a(n,k)=Fibonacci(binomial(n,k)).

Extensions

More terms from David W. Wilson

A125752 Moessner triangle using the Fibonacci terms.

Original entry on oeis.org

1, 1, 2, 4, 9, 8, 26, 69, 77, 55, 261, 806, 1088, 920, 610, 4062, 14362, 22887, 22856, 17034, 10946, 98912, 395253, 728605, 847832, 721756, 502606, 317811, 3809193, 17008391, 35644614, 47557978, 46166656, 35655012, 23828383, 14930352
Offset: 1

Views

Author

Gary W. Adamson, Dec 06 2006

Keywords

Comments

A Moessner triangle is generated with the recurrence described in A125714, starting from a first row M(1,c) filled with the Fibonacci numbers M(1,c) = A000045(c), c >= 1.
Subsequent rows n are generated from the numbers in their previous rows with the rule:
Mark/circle all elements M(n-1, A000217(t)) of the previous row n-1, t >= 1.
Define the elements M(n,.) as the partial sums of the M(n-1,.) that have not been marked:
M(n,c) = Sum_{j=1..c} M(n-1,A014132(j)), c >= 1. The T(n,m) are then defined by reading the marked/circled terms "along antidiagonals": T(n,m) = M(n+m-1, A000217(m)), n >= 1, 1 <= m <= n.

Examples

			The upper left corner of the array M(n,c) is
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, ...
1, 4, 9, 22, 43, 77, 166, 310, 543, 920, 1907, 3504, 6088, 10269, 17034, ...
4, 26, 69, 235, 545, 1088, 2995, 6499, 12587, 22856, 57601, 121003, 230773, ...
26, 261, 806, 3801, 10300, 22887, 80488, 201491, 432264, 847832, 2586423, ...
261, 4062, 14362, 94850, 296341, 728605, 3315028, 9488917, 22445416, ...
4062, 98912, 395253, 3710281, 13199198, 35644614, 213010460, 690899755, ...
and dropping the columns with column numbers in A014132, reading the remaining array by antidiagonals leads to the final triangle T(n,m):
    1;
    1,   2;
    4,   9,    8;
   26,  69,   77,  55;
  261, 806, 1088, 920, 610;
  ...
		

References

  • J. H. Conway and R. K. Guy, "The Book of Numbers", Springer-Verlag, 1996, p. 64.

Crossrefs

Formula

T(n,n) = A081667(n-1).

Extensions

More terms from Joshua Zucker, Jun 17 2007
Description of starting row corrected, comments detailed with formulas by R. J. Mathar, Sep 17 2009

A297965 a(n) = Fibonacci(binomial(n+3, 3)).

Original entry on oeis.org

1, 3, 55, 6765, 9227465, 225851433717, 160500643816367088, 5358359254990966640871840, 13598018856492162040239554477268290, 4244200115309993198876969489421897548446236915, 263621064469290555679241849789653324393054271110084140201023
Offset: 0

Views

Author

Vincenzo Librandi, Jan 10 2018

Keywords

Comments

Fourth diagonal of A045995.

Crossrefs

Programs

  • Magma
    [Fibonacci(Binomial(n+3,3)): n in [0..20]];
    
  • Mathematica
    Table[Fibonacci[Binomial[n + 3, 3]], {n, 0, 20}]
  • PARI
    a(n) = fibonacci(binomial(n+3, 3)) \\ Felix Fröhlich, Jan 12 2018

Formula

a(n) = A000045(A000292(n+1)) = A045995(n+3, 3).
Showing 1-5 of 5 results.