cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A033193 Binomial transform of A033192.

Original entry on oeis.org

1, 2, 6, 19, 62, 207, 704, 2430, 8486, 29903, 106098, 378391, 1354700, 4863834, 17499302, 63055947, 227465414, 821215295, 2966571096, 10721076118, 38757594758, 140143505031, 506827217210, 1833150646599, 6630915738212, 23986989146162, 86775559512774, 313930265564035
Offset: 0

Views

Author

Keywords

Comments

Number of (s(0), s(1), ..., s(2n)) such that 0 < s(i) < 10 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n, s(0) = 3, s(2n) = 3. - Herbert Kociemba, Jun 16 2004

Crossrefs

Cf. A033192.

Programs

  • Mathematica
    CoefficientList[Series[(x^4 - 7 x^3 + 11 x^2 - 6 x + 1)/((1 - 3 x + x^2) (1 - 5 x + 5 x^2)), {x, 0, 23}], x] (* Michael De Vlieger, Feb 12 2022 *)
  • PARI
    Vec((x^4-7*x^3+11*x^2-6*x+1)/((1-3*x+x^2)*(1-5*x+5*x^2)) + O(x^24)) \\ Stefano Spezia, Aug 22 2025

Formula

G.f.: (x^4-7*x^3+11*x^2-6*x+1)/((1-3*x+x^2)*(1-5*x+5*x^2)).
a(n) = (1/5)*Sum_{r=1..9} sin(3*r*Pi/10)^2*(2*cos(r*Pi/10))^(2*n), n >= 1. - Herbert Kociemba, Jun 16 2004
For n > 0, a(n) = (phi^(2*n+1) + 1/phi^(2*n+1))/(2*sqrt(5)) + 5^(n/2-1)*(phi^(n+2) + 1/phi^(n+2))/2, where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Aug 22 2025

A003603 Fractal sequence obtained from Fibonacci numbers (or Wythoff array).

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 2, 1, 4, 3, 2, 5, 1, 6, 4, 3, 7, 2, 8, 5, 1, 9, 6, 4, 10, 3, 11, 7, 2, 12, 8, 5, 13, 1, 14, 9, 6, 15, 4, 16, 10, 3, 17, 11, 7, 18, 2, 19, 12, 8, 20, 5, 21, 13, 1, 22, 14, 9, 23, 6, 24, 15, 4, 25, 16, 10, 26, 3, 27, 17, 11, 28, 7, 29, 18, 2, 30, 19, 12, 31, 8, 32, 20, 5, 33
Offset: 1

Views

Author

Keywords

Comments

Length of n-th row = A000045(n); last term of n-th row = A094967(n-1); sum of n-th row = A033192(n-1). - Reinhard Zumkeller, Jan 26 2012

Examples

			In the recurrence for making new rows, we get row 5 from row 4 thus: write row 4: 1,3,2, and then place 4 right after 1, and place 5 right after 2, getting 1,4,3,2,5. - _Clark Kimberling_, Oct 29 2009
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    -- according to Kimberling, see formula section.
    a003603 n k = a003603_row n !! (k-1)
    a003603_row n = a003603_tabl !! (n-1)
    a003603_tabl = [1] : [1] : wythoff [2..] [1] [1] where
       wythoff is xs ys = f is xs ys [] where
          f js     []     []     ws = ws : wythoff js ys ws
          f js     []     [v]    ws = f js [] [] (ws ++ [v])
          f (j:js) (u:us) (v:vs) ws
            | u == v = f js us vs (ws ++ [v,j])
            | u /= v = f (j:js) (u:us) vs (ws ++ [v])
    -- Reinhard Zumkeller, Jan 26 2012
  • Maple
    A003603 := proc(n::posint)
        local r,c,W ;
        for r from 1 do
            for c from 1 do
                W := A035513(r,c) ;
                if W = n then
                    return r ;
                elif W > n then
                    break ;
                end if;
            end do:
        end do:
    end proc:
    seq(A003603(n),n=1..100) ; # R. J. Mathar, Aug 13 2021
  • Mathematica
    num[n_, b_] := Last[NestWhile[{Mod[#[[1]], Last[#[[2]]]], Drop[#[[2]], -1], Append[#[[3]], Quotient[#[[1]], Last[#[[2]]]]]} &, {n, b, {}}, #[[2]] =!= {} &]];
    left[n_, b_] := If[Last[num[n, b]] == 0, Dot[num[n, b], Rest[Append[Reverse[b], 0]]], n];
    fractal[n_, b_] := # - Count[Last[num[Range[#], b]], 0] &@
       FixedPoint[left[#, b] &, n];
    Table[fractal[n, Table[Fibonacci[i], {i, 2, 12}]], {n, 30}] (* Birkas Gyorgy, Apr 13 2011 *)
    row[1] = row[2] = {1};
    row[n_] := row[n] = Module[{ro, pos, lp, ins}, ro = row[n-1]; pos = Position[ro, Alternatives @@ Intersection[ro, row[n-2]]] // Flatten; lp = Length[pos]; ins = Range[lp] + Max[ro]; Do[ro = Insert[ro, ins[[i]], pos[[i]] + i], {i, 1, lp}]; ro];
    Array[row, 9] // Flatten (* Jean-François Alcover, Jul 12 2016 *)

Formula

Vertical para-budding sequence: says which row of Wythoff array (starting row count at 1) contains n.
If one deletes the first occurrence of 1, 2, 3, ... the sequence is unchanged.
From Clark Kimberling, Oct 29 2009: (Start)
The fractal sequence of the Wythoff array can be constructed without reference to the Wythoff array or Fibonacci numbers. Write initial rows:
Row 1: .... 1
Row 2: .... 1
Row 3: .... 1..2
Row 4: .... 1..3..2
For n>4, to form row n+1, let k be the least positive integer not yet used; write row n, and right after the first number that is also in row n-1, place k; right after the next number that is also in row n-1, place k+1, and continue. A003603 is the concatenation of the rows. (End)
Conjecture: a(n) = abs(floor(n/phi) - floor(n*(1/phi + 1/(-phi)^(A035612(n) + 1)))) where phi = (1+sqrt(5))/2. - Alan Michael Gómez Calderón, Oct 27 2023

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 29 2003
Keyword tabf added by Reinhard Zumkeller, Jan 26 2012

A005207 a(n) = (F(2*n-1) + F(n+1))/2 where F(n) is a Fibonacci number.

Original entry on oeis.org

1, 1, 2, 4, 9, 21, 51, 127, 322, 826, 2135, 5545, 14445, 37701, 98514, 257608, 673933, 1763581, 4615823, 12082291, 31628466, 82798926, 216761547, 567474769, 1485645049, 3889431721, 10182603746, 26658304492, 69792188337, 182718064101, 478361686155, 1252366480135
Offset: 0

Views

Author

Keywords

Comments

Number of block fountains with exactly n coins in the base when mirror image fountains are identified. - Michael Woltermann (mwoltermann(AT)washjeff.edu), Oct 06 2010
a(n) = C(F(n+1)+1,2) + C(F(n)+1,2) = pairwise sums of A033192. - Ralf Stephan, Jul 06 2003
Number of (3412,54312)- and (3412,45321)-avoiding involutions in S_{n+1}. - Ralf Stephan, Jul 06 2003
Number of (s(0), s(1), ..., s(n)) such that 0 < s(i) < 5 and |s(i) - s(i-1)| <= 1 for i = 1,2,...,n, s(0) = 1, s(n) = 1. - Herbert Kociemba, May 31 2004
The sequence 1,1,2,4,9,... has g.f. 1/(1-x-x^2/(1-x-x^2/(1-x-x^2/(1-x))))=(1-3*x+x^2+x^2)/(1-4*x+3*x^2+2*x^3-x^4), and general term (A001519(n)+A000045(n+1))/2. It is the binomial transform of A001519 aerated. - Paul Barry, Dec 17 2009
The Kn3 and Kn4 sums, see A180662 for their definitions, of Losanitsch's triangle A034851 lead to this sequence. - Johannes W. Meijer, Jul 14 2011
Convolution of [1,1,1,2,5,...], which is A001519 with another leading 1, and A212804. - R. J. Mathar, Apr 14 2018
a(n) is the number of Motzkin n-paths of height <= 3. - Alois P. Heinz, Nov 24 2023

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A005207:=-(1-2*z-z^2+z^3)/(z^2-3*z+1)/(z^2+z-1); # Simon Plouffe in his 1992 dissertation with offset 0
    a:= n-> (Matrix([[1,1,1,3]]). Matrix(4, (i,j)-> if i=j-1 then 1 elif j=1 then [4,-3,-2,1][i] else 0 fi)^n)[1,2]: seq(a(n), n=0..34); # Alois P. Heinz, Sep 06 2008
  • Mathematica
    LinearRecurrence[{4, -3, -2, 1}, {1, 2, 4, 9}, 30] (* Jean-François Alcover, Jan 31 2016 *)
  • PARI
    a(n)=(fibonacci(2*n-1)+fibonacci(n+1))/2
    
  • PARI
    x='x+O('x^50); Vec(-x*(1-2*x-x^2+x^3)/((x^2+x-1)*(x^2-3*x+1))) \\ G. C. Greubel, Mar 05 2017

Formula

G.f.: 1-x*(1-2*x-x^2+x^3)/((x^2+x-1)*(x^2-3*x+1)).
a(n) = 4*a(n-1) - 3*a(n-2) - 2*a(n-3) + a(n-4).
a(n) = (w^(2*n-1) + w^(1-2*n) + w^(n+1) - (-w)^(-1-n))/(4*w-2) where w = (1+sqrt(5))/2.
a(n) = (2/5)*Sum_{k=1..4} ( sin(Pi*k/5)^2*(1 + 2*cos(Pi*k/5))^n ). - Herbert Kociemba, May 31 2004
a(-1-2*n) = A027994(2*n); a(-2*n)=A059512(2*n+1).
Let M = an infinite tridiagonal matrix with all 1's in the super and main diagonals and [1,1,1,0,0,0,...] in the subdiagonal. Let V = vector [1,0,0,0,...]. The sequence is generated as leftmost column of M*V iterates. - Gary W. Adamson, Jun 07 2011
2*a(n) = A000045(n+1) + A001519(n). - R. J. Mathar, Apr 14 2018
a(n) mod 2 = A131719(n+3). - Alois P. Heinz, Nov 24 2023

Extensions

a(0)=1 prepended by Alois P. Heinz, Nov 24 2023

A033191 Binomial transform of [ 1, 0, 1, 1, 3, 6, 15, 36, 91, 231, 595, ... ], which is essentially binomial(Fibonacci(k) + 1, 2).

Original entry on oeis.org

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4861, 16778, 58598, 206516, 732825, 2613834, 9358677, 33602822, 120902914, 435668420, 1571649221, 5674201118, 20497829133, 74079051906, 267803779710, 968355724724, 3502058316337, 12666676646162, 45818284122149
Offset: 0

Views

Author

Simon P. Norton

Keywords

Comments

Number of (s(0), s(1), ..., s(2n)) such that 0 < s(i) < 10 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n, s(0) = 1, s(2n) = 1. - Herbert Kociemba, Jun 14 2004
The sequence 1,2,5,14,... has g.f. 1/(1-2x-x^2/(1-2x-x^2/(1-2x-x^2/(1-2x)))) = (1-6x+10x^2-4x^3)/(1-8x+21x^2-20x^3+5x^4), and is the second binomial transform A001519 aerated. - Paul Barry, Dec 17 2009
Counts all paths of length (2*n), n>=0, starting and ending at the initial node on the path graph P_9, see the Maple program. - Johannes W. Meijer, May 29 2010

Examples

			1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 + 429*x^7 + 1430*x^8 + ...
		

Crossrefs

Cf. A033192.
Cf. A211216.

Programs

  • Maple
    with(GraphTheory): G:=PathGraph(9): A:= AdjacencyMatrix(G): nmax:=24; n2:=nmax*2: for n from 0 to n2 do B(n):=A^n; a(n):=B(n)[1,1]; od: seq(a(2*n),n=0..nmax); # Johannes W. Meijer, May 29 2010
  • Mathematica
    CoefficientList[Series[(1-7x+15x^2-10x^3+x^4)/(1-8x+21x^2-20x^3+5x^4), {x,0,30}],x] (* or *) Join[{1},LinearRecurrence[{8,-21,20,-5},{1,2,5,14}, 30]]  (* Harvey P. Dale, Apr 26 2011 *)
  • PARI
    {a(n) = local(A); A = 1; for( i=1, 8, A = 1 / (1 - x*A)); polcoeff( A + x * O(x^n), n)} /* Michael Somos, May 12 2012 */

Formula

G.f.: (1-7x+15x^2-10x^3+x^4)/(1-8x+21x^2-20x^3+5x^4). - Ralf Stephan, May 13 2003
From Herbert Kociemba, Jun 14 2004: (Start)
a(n) = (1/5)*Sum_{r=1..9} sin(r*Pi/10)^2*(2*cos(r*Pi/10))^(2n), n >= 1;
a(n) = 8*a(n-1) - 21*a(n-2) + 20*a(n-3) - 5*a(n-4), n >= 5. (End)
G.f.: 1 / (1 - x / (1 - x / (1 - x / (1 - x / (1 - x / (1 - x / (1 - x / (1 - x )))))))). - Michael Somos, May 12 2012

A081667 a(n) = Fibonacci(binomial(n+2,2)).

Original entry on oeis.org

1, 2, 8, 55, 610, 10946, 317811, 14930352, 1134903170, 139583862445, 27777890035288, 8944394323791464, 4660046610375530309, 3928413764606871165730, 5358359254990966640871840, 11825896447871834976429068427, 42230279526998466217810220532898
Offset: 0

Views

Author

Paul Barry, Mar 26 2003

Keywords

Comments

Diagonal of Fibonacci-Pascal triangle A045995.

Crossrefs

Programs

  • Maple
    with(combinat): seq(fibonacci((n^2-n)/2),n=2..16); # Zerinvary Lajos, May 18 2008
    # second Maple program:
    a:= n-> (<<0|1>, <1|1>>^((n+1)*(n+2)/2))[1, 2]:
    seq(a(n), n=0..20);  # Alois P. Heinz, Jan 20 2017
  • Mathematica
    Table[Fibonacci[Binomial[n+2,2]],{n,0,20}] (* Harvey P. Dale, Dec 03 2014 *)
  • Sage
    [fibonacci(binomial(n,2)) for n in range(2, 17)] # Zerinvary Lajos, Nov 30 2009

Formula

a(n) = sqrt(5)2^(-n(n+3)/2)(sqrt(5)+1)^((n^2+3n+2)/2)/10 + sqrt(5)2^(-n(n + 3)/2)(sqrt(5)-1)^((n^2+3n+ 2)/2)(-1)^(n(n+3)/2)/10.
a(n) = A045995(n+2,2).
a(n) = A000045(A000217(n+1)). - Peter M. Chema, Sep 18 2016. See the name.

Extensions

Name edited by Michel Marcus, Sep 25 2016

A088858 Define a Fibonacci-type sequence to be one of the form s(0) = s_1 >= 1, s(1) = s_2 >= 1, s(n+2) = s(n+1) + s(n); then a(n) = maximal m such that n is the m-th term in some Fibonacci-type sequence.

Original entry on oeis.org

1, 2, 3, 3, 4, 3, 4, 5, 4, 4, 5, 4, 6, 5, 4, 5, 5, 6, 5, 5, 7, 5, 6, 5, 5, 6, 5, 6, 7, 5, 6, 5, 6, 8, 5, 6, 7, 6, 6, 5, 6, 7, 6, 6, 7, 6, 8, 6, 6, 7, 6, 6, 7, 6, 9, 6, 6, 7, 6, 8, 7, 6, 7, 6, 6, 7, 6, 8, 7, 6, 7, 6, 8, 7, 6, 9, 7, 6, 7, 6, 8, 7, 6, 7, 7, 8, 7, 6, 10, 7
Offset: 1

Views

Author

Don Reble, Nov 20 2003

Keywords

Comments

A033192(k) is the number of integers m such that a(m) = k. - Michel Marcus, Aug 03 2017

Crossrefs

Cf. A033192, A088527 (which is a(n)+1).

Programs

  • Mathematica
    max = 12; s[n_] := (1/2)*((3*s1 - s2)*Fibonacci[n] + (s2 - s1)*LucasL[n]); a[n_] := Reap[Do[If[s[m] == n, Sow[m - 1]], {m, 1, max}, {s1, 1, max}, {s2, 1, max}]][[2, 1]] // Max; Table[a[n], {n, 1, 90}] (* Jean-François Alcover, Jan 15 2013 *)
  • PARI
    a(n) = {if (n==1, return (1)); r = 2; while (ceil(((-1)^r*fibonacci(r-2)*n + 1)/fibonacci(r-1)) <= floor(((-1)^r*fibonacci(r-1)*n - 1)/fibonacci(r)), r++); r-1;} \\ Michel Marcus, Aug 02 2017

Formula

For n>1, a(n) is the largest integer r>1 such that ceiling(((-1)^r*Fibonacci(r-2)*n + 1)/Fibonacci(r-1)) <= floor(((-1)^r*Fibonacci(r-1)*n - 1)/Fibonacci(r)). See Theorem 2.12 in Jones & Kiss. - Michel Marcus, Aug 02 2017

A301809 Group the natural numbers such that the first group is (1) then (2),(3),(4,5),(6,7,8),... with the n-th group containing F(n) sequential terms where F(n) is the n-th Fibonacci number (A000045(n)). Sequence gives the sum of terms in the n-th group.

Original entry on oeis.org

1, 2, 3, 9, 21, 55, 140, 364, 945, 2465, 6435, 16821, 43992, 115102, 301223, 788425, 2063817, 5402651, 14143524, 37026936, 96935685, 253777537, 664392743, 1739393929, 4553778096, 11921922650, 31211961195, 81713914569, 213929707485, 560075086495, 1466295355580, 3838810662436, 10050136117497
Offset: 1

Views

Author

Frank M Jackson, Mar 27 2018

Keywords

Comments

a(n) is the sum of all nodes at height n-1 within a binary tree structure recursively built from the Hofstadter G-sequence (see comments for A005206).

Examples

			a(7) = 14 + 15 + 16 + ... + 21 = (F(9)+1)*F(6)/2 = 140.
		

Crossrefs

Programs

  • Magma
    [1] cat [(Fibonacci(n+2)+1)*Fibonacci(n-1) div 2 : n in [2..35] ]; // Vincenzo Librandi, Apr 18 2018
    
  • Mathematica
    a[n_] := If[n==1, 1, (Fibonacci[n+2]+1)Fibonacci[n-1]/2]; Array[a, 50]
    Join[{1}, LinearRecurrence[{3, 1, -5, -1, 1}, {2, 3, 9, 21, 55}, 40]] (* Vincenzo Librandi, Apr 18 2018 *)
  • PARI
    a(n) = if (n==1, 1, (fibonacci(n+2)+1)*fibonacci(n-1)/2); \\ Michel Marcus, Apr 21 2018
    
  • PARI
    Vec(x*(1 - x)*(1 - 4*x^2 - x^3 + x^4) / ((1 + x)*(1 - 3*x + x^2)*(1 - x - x^2)) + O(x^60)) \\ Colin Barker, May 11 2018

Formula

a(1) = 1 and for n > 1, a(n) = (F(n+2)+1)*F(n-1)/2, where F(n) is the n-th Fibonacci number (A000045).
From Colin Barker, Mar 27 2018: (Start)
G.f.: x*(1 - x)*(1 - 4*x^2 - x^3 + x^4) / ((1 + x)*(1 - 3*x + x^2)*(1 - x - x^2)).
a(n) = 3*a(n-1) + a(n-2) - 5*a(n-3) - a(n-4) + a(n-5) for n>6. (End)
a(n) = A033192(n+1) - A033192(n) for n > 1. - J.S. Seneschal, Jul 07 2025

A032441 a(n) = Sum_{i=0..2} binomial(Fibonacci(n),i).

Original entry on oeis.org

1, 2, 2, 4, 7, 16, 37, 92, 232, 596, 1541, 4006, 10441, 27262, 71254, 186356, 487579, 1276004, 3339821, 8742472, 22885996, 59912932, 156848617, 410626154, 1075018897, 2814412826, 7368190922, 19290113572, 50502074767, 132215989336, 346145696821, 906220783316
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> (f-> f*(f+1)/2+1)((<<0|1>, <1|1>>^n)[1, 2]):
    seq(a(n), n=0..35);  # Alois P. Heinz, Jul 01 2018
  • Mathematica
    Table[Sum[Binomial[Fibonacci[n],i],{i,0,2}],{n,0,30}] (* or *) LinearRecurrence[ {4,-2,-6,4,2,-1},{1,2,2,4,7,16},30] (* Harvey P. Dale, Feb 02 2015 *)

Formula

a(0)=1, a(1)=2, a(2)=2, a(3)=4, a(4)=7, a(5)=16, a(n)=4*a(n-1)- 2*a(n-2)- 6*a(n-3)+4*a(n-4)+2*a(n-5)-a(n-6). - Harvey P. Dale, Feb 02 2015
a(n) = A033192(n) + 1. - Alois P. Heinz, Jul 01 2018

A296516 a(n) is the number of terms in expanded form of bivariate polynomial Q_n, where (P_n, Q_n) is defined by: P_0 = x, Q_0 = y, P_(n+1) = P_n + Q_n, Q_(n+1) = P_n * Q_n.

Original entry on oeis.org

1, 1, 2, 5, 14, 40, 111, 300, 797, 2098, 5499, 14389, 37634, 98435, 257516, 673827, 1763460, 4615686, 12082137, 31628294
Offset: 0

Views

Author

Luc Rousseau, Feb 27 2018

Keywords

Comments

Programs based on the direct application of the definition quickly reach a limitation by combinatorial explosion, hence this short list of values in section Data. The first conjectured formula (see Formulas) obtained by the observation of a pattern in the 2D shape of Q_n (as drawn in the Examples) is more computationally efficient and makes it possible to produce a significantly longer list of (nonguaranteed) values: see attached a-file in b-file format, section Links.
A003686 and A064847 are values of P_n and Q_n at x=y=1 (i.e., sums of coefficients in these polynomials). At x=2, y=1 (or vice versa) P_n and Q_n seem to give same sequences but shifted. At x=y=-1, P_n seems to give A000058 negated interleaved with -1's, while Q_n seems to give A007018 interleaved with the same sequence negated. - Andrey Zabolotskiy, May 22 2018

Examples

			Q_0 = y -> one term -> a(0) = 1;
Q_1 = x*y -> one term -> a(1) = 1;
Q_2 = x^2*y + x*y^2 -> two terms -> a(2) = 2;
Q_3 = x^3*y + 2*x^2*y^2 + x^3*y^2 + x*y^3 + x^2*y^3 -> five terms -> a(3) = 5;
...
Locations of terms in 2D arrays indexed by the exponents of x and y:
   0: .   1: ..   2: ...   3: ....   4: ......   5: .........
      X      .X      ..X      ...X      ....X.      .....X...
                     .X.      ..XX      ...XXX      ....XXXX.
                              .XX.      ..XXXX      ...XXXXXX
                                        .XXXX.      ..XXXXXXX
                                        ..XX..      .XXXXXXXX
                                                    ..XXXXXX.
                                                    ..XXXXX..
                                                    ...XXX...
		

Crossrefs

Cf. A005207 (which with +1 added appears to be to P_n as a(n) is to Q_n).

Programs

  • Mathematica
    {p[0], q[0]} := {x, y};
    {p[n_], q[n_]} := {p[n - 1] + q[n - 1], p[n - 1] q[n - 1]};
    a[n_] := Length@CoefficientRules[q[n]];
    Table[a[n], {n, 0, 10}] (* Andrey Zabolotskiy, Peter Luschny, May 30 2018 *)
    From Luc Rousseau, Feb 27 2018: (Start)
    (* conjectured: *)
    T[n_] := n*(n + 1)/2
    F[n_] := Fibonacci[n]
    V[n_] := Sum[F[k]*(Sum[(n - 2 - l)*F[l], {l, k + 1, n - 3}]), {k, 1, n - 4}]
    W[n_] := Sum[(n - 2 - l)*T[F[l]], {l, 1, n - 3}]
    AA[n_] := (F[n + 1])^2 - T[n - 1] - T[F[n - 1]] - 2*V[n] - 2 W[n]
    Table[AA[n], {n, 1, 50}]
    (End)
  • Python
    def A296516(n):
        P, Q = {(1,0)}, {(0,1)}
        for _ in range(n): P, Q = P|Q, set((p[0]+q[0],p[1]+q[1]) for p in P for q in Q)
        return len(Q) # Chai Wah Wu, Oct 18 2021

Formula

Conjectured:
a(n) = F(n+1)^2 - T(n-1) - T(F(n-1)) - 2*V(n) - 2*W(n) for n > 0, where
F(n) is the n-th Fibonacci number,
T(n) is the n-th triangular number,
V(n) = Sum_{i=1..n-4} F(i)*(Sum_{j=i+1..n-3} (n-2-j)*F(j)),
W(n) = Sum_{i=1..n-3} (n-2-i)*T(F(i)).
Or:
a(n) = F(n+1)^2 - T(n-1) - T(F(n-1)) - [n>=4]*U(n) where [] is the Iverson bracket, and U(n) = F(n-1)*F(n-3) + F(n+1)*(2*F(n-4)-1) + 5 - 8*(n mod 2).
Conjectures from Colin Barker, Mar 28 2018: (Start)
G.f.: 1 + x*(1 - 5*x + 9*x^2 - 5*x^3 - 2*x^4 + x^5) / ((1 - x)^3*(1 - 3*x + x^2)*(1 - x - x^2)).
a(n) = 7*a(n-1) - 18*a(n-2) + 20*a(n-3) - 6*a(n-4) - 6*a(n-5) + 5*a(n-6) - a(n-7) for n > 7.
(End)
From Luc Rousseau, Mar 30 2018: (Start)
Derived from the conjectured order-7 linear recurrence above, for n > 0,
a(n) = -(1/2)*n^2 + (1/2)*n - 1 + ((2+phi)/10)*(phi^2)^n + ((4-3*phi)/10)*(-phi^(-1))^n + ((1+3*phi)/10)*phi^n + ((3-phi)/10)*(phi^(-2))^n,
where phi denotes the golden ratio and lim_{n->oo} a(n+1)/a(n) = phi^2.
a(n) = (F(2*n+1) + F(n+2) - n^2 + n - 2) / 2.
(End)

Extensions

a(15)-a(19) from Andrey Zabolotskiy, May 30 2018

A381503 Number of rectangles in a Fibonacci(n) X Fibonacci(n+1) grid.

Original entry on oeis.org

1, 3, 18, 90, 540, 3276, 21021, 137445, 916300, 6167700, 41812200, 284604840, 1942428033, 13278352815, 90862598190, 622150990734, 4261620339460, 29198279495220, 200080147593645, 1371167039301345, 9397260307853496, 64406143791454248, 441430873666787088, 3025546968019741200
Offset: 1

Views

Author

Darío Clavijo, Feb 25 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Times @@@ Partition[PolygonalNumber[Fibonacci[Range[25]]], 2, 1] (* Paolo Xausa, Mar 13 2025 *)
  • Python
    from sympy import fibonacci
    A096948 = lambda n,m: (m * (m + 1) * n * (n + 1)) >> 2
    a = lambda n: A096948(fibonacci(n),fibonacci(n+1))
    print([a(n) for n in range(1, 25)])

Formula

a(n) = A096948(Fibonacci(n),Fibonacci(n+1)).
a(n) = A033192(n) * A033192(n+1).
Showing 1-10 of 10 results.