A033193 Binomial transform of A033192.
1, 2, 6, 19, 62, 207, 704, 2430, 8486, 29903, 106098, 378391, 1354700, 4863834, 17499302, 63055947, 227465414, 821215295, 2966571096, 10721076118, 38757594758, 140143505031, 506827217210, 1833150646599, 6630915738212, 23986989146162, 86775559512774, 313930265564035
Offset: 0
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..1791
- N. J. A. Sloane, Transforms.
- Index entries for linear recurrences with constant coefficients, signature (8,-21,20,-5).
Crossrefs
Cf. A033192.
Programs
-
Mathematica
CoefficientList[Series[(x^4 - 7 x^3 + 11 x^2 - 6 x + 1)/((1 - 3 x + x^2) (1 - 5 x + 5 x^2)), {x, 0, 23}], x] (* Michael De Vlieger, Feb 12 2022 *)
-
PARI
Vec((x^4-7*x^3+11*x^2-6*x+1)/((1-3*x+x^2)*(1-5*x+5*x^2)) + O(x^24)) \\ Stefano Spezia, Aug 22 2025
Formula
G.f.: (x^4-7*x^3+11*x^2-6*x+1)/((1-3*x+x^2)*(1-5*x+5*x^2)).
a(n) = (1/5)*Sum_{r=1..9} sin(3*r*Pi/10)^2*(2*cos(r*Pi/10))^(2*n), n >= 1. - Herbert Kociemba, Jun 16 2004
For n > 0, a(n) = (phi^(2*n+1) + 1/phi^(2*n+1))/(2*sqrt(5)) + 5^(n/2-1)*(phi^(n+2) + 1/phi^(n+2))/2, where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Aug 22 2025
Comments