cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A204274 G.f.: Sum_{n>=1} Pell(n^2)*x^(n^2).

Original entry on oeis.org

1, 0, 0, 12, 0, 0, 0, 0, 985, 0, 0, 0, 0, 0, 0, 470832, 0, 0, 0, 0, 0, 0, 0, 0, 1311738121, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21300003689580, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2015874949414289041, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Paul D. Hanna, Jan 14 2012

Keywords

Comments

Compare g.f. to the Lambert series identity: Sum_{n>=1} lambda(n)*x^n/(1-x^n) = Sum_{n>=1} x^(n^2); Liouville's function lambda(n) = (-1)^k, where k is number of primes dividing n (counted with multiplicity).

Examples

			G.f.: A(x) = x + 12*x^4 + 985*x^9 + 470832*x^16 + 1311738121*x^25 +...
where A(x) = x/(1-2*x-x^2) + (-1)*2*x^2/(1-6*x^2+x^4) + (-1)*5*x^3/(1-14*x^3-x^6) + (+1)*12*x^4/(1-34*x^4+x^8) + (-1)*29*x^5/(1-82*x^5-x^10) + (+1)*70*x^6/(1-198*x^6+x^12) +...+ lambda(n)*Pell(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)) +...
		

Crossrefs

Programs

  • Maple
    pell:= gfun:-rectoproc({a(0)=0,a(1)=1,a(n)=2*a(n-1)+a(n-2)},a(n),remember):
    seq(`if`(issqr(n),pell(n),0), n=1..100); # Robert Israel, Nov 24 2015
  • Mathematica
    CoefficientList[Sum[Fibonacci[n^2, 2] x^n^2/x, {n, 1, 8}], x] (* Jean-François Alcover, Mar 25 2019 *)
  • PARI
    /* Subroutines used in PARI programs below: */
    {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)), n)}
    {A002203(n)=polcoeff(2*(1-x)/(1-2*x-x^2+x*O(x^n)), n)}
    
  • PARI
    {a(n)=issquare(n)*Pell(n)}
    
  • PARI
    {lambda(n)=local(F=factor(n));(-1)^sum(i=1,matsize(F)[1],F[i,2])}
    {a(n)=polcoeff(sum(m=1,n,lambda(m)*Pell(m)*x^m/(1-A002203(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))),n)}

Formula

G.f.: Sum_{n>=1} lambda(n)*Pell(n)*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)), where lambda(n) = A008836(n), Pell(n) = A000129(n) and A002203 is the companion Pell numbers.

A211891 G.f.: exp( Sum_{n>=1} 2 * Pell(n^2) * x^n/n ), where Pell(n) = A000129(n).

Original entry on oeis.org

1, 2, 14, 682, 236826, 525175434, 7101054148862, 575978478770467714, 277997363115795461721154, 794462328877965002894838885122, 13398419999037765629218732004567606814, 1330302023374557034879527995005574743144202826
Offset: 0

Views

Author

Paul D. Hanna, Apr 24 2012

Keywords

Comments

Given g.f. A(x), note that A(x)^(1/2) is not an integer series.

Examples

			G.f.: A(x) = 1 + 2*x + 14*x^2 + 682*x^3 + 236826*x^4 + 525175434*x^5 +...
such that
log(A(x))/2 = x + 12*x^2/2 + 985*x^3/3 + 470832*x^4/4 + 1311738121*x^5/5 + 21300003689580*x^6/6 + 2015874949414289041*x^7/7 +...+ Pell(n^2)*x^n/n +...
Pell numbers begin:
A000129 = [1,2,5,12,29,70,169,408,985,2378,5741,13860,33461,...].
		

Crossrefs

Cf. A208056, A211892, A000129 (Pell), A204327 (Pell(n^2)).

Programs

  • PARI
    {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)),n)}
    {a(n)=polcoeff(exp(sum(k=1, n, 2*Pell(k^2)*x^k/k)+x*O(x^n)), n)}
    for(n=0, 20, print1(a(n), ", "))

A380083 a(n) = Pell(n^2)/Pell(n).

Original entry on oeis.org

1, 6, 197, 39236, 45232349, 304285766994, 11928254138546089, 2725453049877127789064, 3629520789795568149638626009, 28171611459441395148628640333550174, 1274457582507820938168220698796661580252461, 336039604487720392926819615640785342048933644491212
Offset: 1

Views

Author

Seiichi Manyama, May 08 2025

Keywords

Crossrefs

Main diagonal of A383742.

Programs

  • Maple
    a:= n-> (f->f(n^2)/f(n))(k->(<<2|1>, <1|0>>^k)[1, 2]):
    seq(a(n), n=1..12);  # Alois P. Heinz, May 08 2025
  • Mathematica
    a[n_] := Fibonacci[n^2, 2]/Fibonacci[n, 2]; Array[a, 12] (* Amiram Eldar, May 08 2025 *)
  • PARI
    pell(n) = ([2, 1; 1, 0]^n)[2, 1];
    a(n) = pell(n^2)/pell(n);

Formula

a(n) = A204327(n)/A000129(n).
a(n) = [x^n] x/(1 - A002203(n)*x + (-1)^n*x^2).
Showing 1-3 of 3 results.